2019年高考物理模型系列之算法模型专题05万有引力定律应用模型学案_第1页
2019年高考物理模型系列之算法模型专题05万有引力定律应用模型学案_第2页
2019年高考物理模型系列之算法模型专题05万有引力定律应用模型学案_第3页
2019年高考物理模型系列之算法模型专题05万有引力定律应用模型学案_第4页
2019年高考物理模型系列之算法模型专题05万有引力定律应用模型学案_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题05万有引力定律应用模型模型界定本模型中归纳万有引力定律及其适用条件,在天体问题中主要是涉及中心天体的质量与密度的计算,沿椭圆轨道运行的天体及变轨问题.模型破解1.万有引力定律(i)内容自然界中任何两个物体都相互吸引,引力的大小F与物体的质量m和m2的乘积成正比,与它们之间距离的平方成反比.(ii) 公式Gmm22iir式中质量的单位用kg,距离的单位用m,力的单位用N.G是比例系数,叫做引力常量,G=6.67X10N-m2/kg2.(iii) 适用条件万有引力公式适用于两质点间的引力大小的计算对于可视为质点的物体间的引力的求解也可以利用万有引力公式,如两物体间距离远大于物体本身大小r是球

2、心间距离.时,物体可看做质点;均匀球体可视为质量集中于球心的质点,公式中当研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出两个物体上每个质点与另一个物体上所有质点的万有引力,然后求合力.例如将物体放在地球的球心时,由于物体各方面受到相互对称的万有引力,故合外力为零2.万有引力与重力的区别(i)自转的影响当物体位于赤道上时:00mgFnGMm 2厂 mRR2当物体位于两极时:900mgGMmR2当物体位于纬度时,万有引力为FGMm,物体所需向心力 FnR21 mR cos 是万有引力的一个分力,所谓重力是与地面对物体的支持力相平衡的万有引力的另一个分力.物体的重力产生的原因是万有引力

3、,但在一般情况下万有引力不等于重力,重力的方向不指向地心,由于地球自转的影响,随着纬度的增加,向心力越来越小,重力越来越大,因而重力加速度也随着纬度的增加而增大.(ii) 地面到地心距离与R与地球密度的影响由于地球是椭圆体,质量分布也不均匀,重力与重力加速度也会发生变化.如果只考虑地球的形状,从赤道到两极,地面到地心的距离越来越小,重力与重力加速度越来越大;如果只考虑地球自转的影响,从赤道到两极,所需向心力越来越小,重力与重力加速度也越来越大.(iii) 赤道上的物体由于赤道上的物体重力与万有引力的差别在千分之四以下,因此在忽略地球处置的影响下可近似认为地球引力等于重力,有所谓的黄金代换式:G

4、MgR2.例1.如图,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为;石油密度远小于,可将上述球形区域视为空腔。如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏高。重力加速度在原坚直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”。为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象。已知引力常数为Go(1)设球形空腔体积为V,球心深度为d(远小于地球半径),PQ=x,求空腔所引起的Q点处的重力加速(2)若在水平地面上半径L的范围内发现:

5、重力加速度反常值在与k(k1)之间变化,且重力加速度反常的最大值出现在半为L的范围的中心,如果这种反常是由于地下存在某一球形空腔造成的,试求此球L2kG (k2/3 1)形空腔球心的深度和空腔的体积。答案:(1)GVd(2)(d2x2)3/2,k2/31解析:(1)如果将近地表的琮形空腔直解度为。的岩石贝该地区重力加速度便回到正常值一因此,重力加速度反常可通过埴充后的球形区域产生的附加引力G当二小来计算一式中的m是Q点处某质点的展量是填充后球形区域的质量,版=pV,而工是球形空腔中心。至Q点的距离在数值上等于由于存在球形空腔所引起的Q点处重力加速度改变的大小X2点处重力加速度改变的方向沿OQ方

6、向重力加速度反常是这一改变在竖直方向止的投影二朦立以上式子得rGWd(2)由式得,重力加速度反常g的最大值和最小值分别为maxG Vd g min22 3/2(d2 L2)由提设有 g max kmin联立以上式子得,地下球形空腔球心的深度和空腔的体积分别为d / L , Vk2/31L2kG (k2/31)例2 .地球可视为球体,自转周期为T,在它两极处,用弹簧不测某物体重力为P,在它的赤道上,用弹簧秤测同一物体的重力为0.9 P,地球的平均密度是多少?40 R:GT24 R333解析:30GT2设物体质量为 解地球质量为 M半彳仝为R。在两极处:物体重力等于万有引力PGMm,R2在赤道处:

7、地球对物体的万有引力与弹簧对物体的拉力的合力提供向心力。由牛顿第二定律:MmF0.9PT2 3两式联立可得:地球的平均密度模型演练40 2R3GT240 2R3M GT2V 4 R3330Gt71. 一物体静置在平均密度为的球形天体表面的赤道上。已知万有引力常量G,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为A.3G1)2D.答案:D解析球形天体表面的赤道上,物体对天体表面压力恰好为零,说明天体对物体的万有引力恰好等于物体随天体运动所需的向心力,有T = 解得:正确选项为D。A.0.5B2.C.3.2D.4(i)测质量的两种方法“地上的方法”在天体的表面,忽略星体的自转则有万有

8、引力等于重力:mgGMm 篇一厂,解得MRgR2此法中小腹星体答案:B解析:(1)在该行星表面处,G*mg行,g行=16m/s .据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍,一个在地球表面重量为600 N的人在这个行星表面的重量将变为960 N,由此可推知该行星的半径与地球半径之比约为.在忽略自转的情况下,万有引力等于物体所受的重力GMme,GM皿%IM行g地正确。mg,有RJ,故一I-=2RIgR地MM地g行表面的重力加速度,故称之为地上的方法”.若天体围绕某中心天体作匀速圆周运动时,万有引力充当向心力:GMm2- r22mr()2 ,可解得中心天体的质/ 2

9、 3日4 r重M2-GT(ii)测密度的方法天体的平均密度:M ,而天体的体积:V 4 R3 ,故有V33 r34,士3 .若运行天体的轨道 GT2R33近似等于中心天体R的半径时:-,只需测出运行天体绕中心天体表面运行的周期即可.GT2例3.(1)开普勤行星运动第三定律指出,行星绕太阳运动的椭圆轨道的正半长轴a的三次方与它的公转周3a期T的一次万成正比,即一2k,k是一个所有行星都相同的常量,将行星绕太阳的运动按圆周运动处理,T2请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M太。(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立,经测定

10、月地距离为3.84X108m月球绕地球运动的周期为2.36X106s,试计算地球的质量”地=(G=6.67X1011Nm2/kg2,结果保留一位有效数字)一42k24答案:(1)4k(2)6X10kg解析;fD因行星绕太阳作匀速圆周运动,于是轨道的半长$由。即为轨道半径n根据万有引力定律和牛顿第二定律有于是有故闻哀上*4(J(2)在月地系统中,设月球绕地球运动的轨道半径为R,周期为T,由式可得解得M 地=6X 1024kg(M地=5X1024kg也算对)例4.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落

11、回原处。(取地球表面重力加速度g=10m/s2,空气阻力不计)(1)求该星球表面附近的重力加速度g;(2)已知该星球的半径与地球半径之比为R星:R地=1:4,求该星球的质量与地球质量之比M星:Mm。答案:(1)2m/s2(2)1:80解析:(1)t=,所以g;=-g=2m/s2,g5(2)g=R,所以M=G,可解得:M星:M地=1/542=1:80,模型演练3 .“嫦娥二号”是我国月球探测第二期工程的先导星。若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期T,已知引力常数G半彳空为R的球体体积公式V-R3,则可估算月4球的A.密度B.质量C.半径D.自转周期答案:A解

12、正墟峨二号节近月表面做周期已知的匀速圆周运动,有等1=心牛口由于月球半径R未如所以R1广无法估算质量M,但皓含球体体积公式可估篁密度(与营成正比3A正确。不前将田常桃二号f的周期与月球的目转周期混淆;无法求出月球的自转周期,4 .一行星绕恒星作圆周运动。由天文观测可得,其运动周期为T,速度为v,引力常量为G,则3TA.恒星的质量为:T, ,一 4.行星的质量为-9GT2C.行星运动的轨道半径为vT D .行星运动的加速度为 2-v2T答案:ACD解析:根据圆周运动知识得:由v红得到行星运动的轨道半径为r,C正确。根据万有引力提供向T223T心力得:用mr4由得M-v,故A正确;根据题意无法求出

13、行星的质量,故B错误.根r2T22G由得:行星运动的加速度为2-v .故D正确.T5.天文学家新发现了太阳系外的一颗行星。这颗行星的体积是地球的4.7倍,质量是地球的25倍。已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67X10-11NI-m2/kg2,由此估算该行星的平均密度为A.1.8X103kg/m3B.5.6X103kg/m3C.1.1X104kg/m3D.2.9X104kg/m3答案:D解析:苜先4艮据近地卫星饶地球运动的向心力由万有引力提供G等=切虫普,可求出地球的质量然后根R1T1据。=及质量与半径间的关系,可得该行星的密度约为2.9x104成6.已知地球同步

14、卫星离地面的高度约为地球半径的6倍。若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为A.6小时B.12小时C.24小时D.36小时答案:B解析:地球的同步卫星的周期为T1=24小时,轨道半径为n=7R,密度p1。某行星的同步卫星周期为丁2,轨道半径为r2=3.5R2,密度p2。根据牛顿第二定律和万有引力定律分别有4 5g切i工Pi弓码- 正J=g学力Gw7-.1 p- TlR2Ji两式化简得4.应用之二:行星表面重力加速度、轨道重力加速度(重力近似等于万有引力)表面重力加速度:-MmGmg0R2goGMR2轨道重力加速度:GMm-mg

15、h hghGMR h 2R2 2 go (R h)地面下的重力加速度:GMm2(R d)243 (R d)3一(R d)3 (- -M3R3gdGMR3(R d) -RRd g0从行星中心到无限远重力加速度的变化规律如图所示:gIO R例5.2011年4月10日,我国成功发射第8颗北斗导航卫星,建成以后北斗导航卫星系统将包含多颗地球同步卫星,这有助于减少我国对GPW航系统白依赖,GPS由运行周期为12小时的卫星群组成,设北斗导航系统同步卫星和GPS导航的轨道半径分别为R和R2,向心加速度分别为a1和a2,则R:R2=RR2a:a2=(可用根式表示)2/解析-团=2,由j=幽-R=箱彳寻:RJ-

16、j?也=j因而TTI1=74,心无A4#我国墨J马舄I勺4例6.晴天晚上,人能看见卫星的条件是卫星被太阳照着且在人的视野之内。一个可看成漫反射体的人造地球卫星的圆形轨道与赤道共面,卫星自西向东运动。春分期间太阳垂直射向赤道,赤道上某处的人在日落后8小时时在西边的地平线附近恰能看到它,之后极快地变暗而看不到了。已知地球的半径6cR地6.410m,地面上的重力加速度为10m/s,估算:(答案要求精确到两位有效数字)(1)卫星轨道离地面的高度。(2)卫星的速度大小。4106(11)6.4106m63c喈60(12.526.4102)5.710m/s解析:从北极沿地轴往下看的地球俯视图如图所示,设卫星

17、离地高h,Q点日落后8小时时能看到它反射的阳光。日落8小时Q点转过的角度设为0hR地RhR地cos6.4106(1)6.4106m轨道高2cos60(2)因为卫星轨道半径rrh2R地根据万有引力定律,引力与距离的平方成反比卫星轨道处的重力加速度12gr -g地 2.5m/s 42Vmgrmrv,gr,2.526.41065.7103m/s模型演练7 .质量为m的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动。已知月球质量为球半径为R,月球表面重力加速度为g,引力常量为G,不考虑月球自转的影响,则航天器的答案:AC.角速度w gRD.向心加速度aGmR2解肝根据万有引力提供卫星幽周

18、运动的向心力和万有引力等于重力得出:”3故A正画1gR得4故E错误|mg-必申丁得-2晤,故C正确j工皿得a-j故口错误.8 .月球绕地球做匀速圆周运动的向心加速度大小为a,设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则(A)g1a(B)g2a(Qg1g2a(D)g2ga答案:B解析:根据月球绕地球做匀速圆周运动的向心力由地球引力提供m月amj!g2GM等良,可知B正确。而mgiGmm月.2W a、R月g2无关,A CD错误.9 .火星直径约为地球的一半,质量约为地球的十分之一,它绕太阳公转的轨道半径约为地球公转半径的1.5倍,根据以上数据,以下

19、说法正确的是A.火星表面重力加速度的数值比地球表面的小B.火星公转的周期比地球的长C.火星公转的线速度比地球的大D.火星公转的向心加速度比地球的大答案:AB解析:根据五直汕等于重力得出:=啰得二,根据火星直径约为地球的一半,质量约为地球的十分之一,计算得出火星表面的重力加速度约为地球表面的故A正确,研究火星和地理维太跖公珪,根据五直引力提供向心力得出:?要=而言得:/=2川显,M为太阳的质量L为轨道半径.火垦的轨道半径大于地球的轨道半径,通过T的表达式发现公铸轨道半径大的周期长,故B错误二酬究火星和地维却睑歧,根据万直引力拨供向心力得出;詈三加二,得:,=M为太阳的质量,I为轨道半火星的轨道半

20、胫大于地球的轨道半轻,通过v的表达式发现公转轨道半径大的线速度小,故C错误;研究火星和地球绕太阳公建,根据万有引力提供向A力得出:学士皿,得:口=咚.M为太阳rr的底量,工为轨道半彳型火星的轨道半径大于地球的轨道半径,通过且的表达式发现公转轨道半径大的向心加速度小,故D错俣q10 .英国新科学家(NewScientist)杂志评选出了2008年度世界8项科学之最,在XTEJ1650-500双星系统中发现的最小黑洞位列其中,若某黑洞的半径R约45km,质量M和半径R的关系满足M2(其R2G中c为光速,G为引力常量),则该黑洞表面重力加速度的数量级为A.108m/s2B.1010m/s2C. 10

21、12m/s2d1014m/s2答案:C解析:可认为黑洞表面物体的重力等于万有引力,GMmGM即mg,即一2R2R2g,将R2代入上式得g2G2C2R丁和丁2,设在卫星1、卫星2各自所在的高度=1X1012m/s:C正确。11 .近地人造卫星1和2绕地球做匀速圆周运动的周期分别为上的重力加速度大小分别为g1、4/3A史立g2T22D.史T1g2T2答案:Bg2,则4/3B.史T2g2T12D.史T2g2T1解析:卫星绕天体作匀速圆周运动由万有引力提供向心力有争=m(争民可得5二K为常数,由重K上JC力等于万有引力警.it4nigj联立解得;7f则g与“成反比fB正确12.据媒体报道,嫦娥一号卫星

22、环月工作轨道为圆轨道,轨道高度200km,运行周期127分钟。若还知道引力常量和月球平均半径,仅利用以上条件不能求出的是A.月球表面的重力加速度B.月球对卫星的吸引力C.卫星绕月球运行的速度D.卫星绕月运行的加速度答案:B。上-三3二至粤互解析:根据万有引力提供向心力,有(&+成1,丁一,月球表面的重GM4加(宜+葡?力加速度出*RT,A可以;在不知卫星的质量,月球对卫星的吸引力无法求得,B不行;2就尺4町Uv二a-丁,C可以;R+h,D可以。5.应用之三:宇宙速度(i)宇宙速度宇宙速度是发射速度的三个临界值.第一宇宙速度vIJGMvgR79km/s,第二宇宙速度R2GM,vIIJ11.2km

23、/s,第三宇宙速度vIII16.7km/s.,R在地球表面以平抛的方式发射天体时,若发射速度vVI时物体将落回到地面上;若vVI沿地球表面做匀速圆周运动;若VIvVII时物体绕以地心为一个焦点的椭圆轨道运动;若VIIVVIII时脱离地球束缚绕太阳运行;若VVIII时脱离太阳束缚进入宇宙空间中.在地球表面以竖直方式发射物体时,物体不落回地球表面的最小发射速度等于第二宇宙速度.例7.在地面上以速度V抛射一飞船后,这艘飞船绕地球转动,当将抛射速度提高到2V时,飞船将可能A、地球转动,轨道半径增大B、仍绕地球转动,轨道半径减小C、摆脱地球引力的束缚,成为太阳系的小行星D、摆脱太阳引力的束缚,飞向宇宙答

24、案:CD解析;飞船绕地球转弹寸对应的发射速度此工甲cimj一则15.的仙工2廿也一如一若16.7knJ二时。正确5若应选ra5&Y224Jbn;占时D正确.例8.万有引力作用下的物体具有引力势能,取无穷远处引力势能为零,物体距星球球心距离为r时的引力势能为:Ep=-GmM(G为万有引力常量,设宇宙中有一半径为R的星球,宇航员在该星球上以速度V0竖直向上r抛出一质量为m的物体,不计空气阻力,经t秒后落回手中,则()IA.在该星球表面上以J2V0R的初速度水平抛出一个物体,物体将不再落回星球表面tVnR一,.B.在该星球表面上以2,的初速度水平抛出一个物体,物体将不再洛回星球表面t2v0RC.在该

25、星球表面上以的初速度竖直抛出一个物体,物体将不再落回星球表面D.在该星球表面上以2包的初速度竖直抛出一个物体,物体将不再落回星球表面t答案:ABD解析:由物体的竖直上抛运动可知该星球表面的重力加速度g=牛.平抛出物体时初速度场之必=伴物体才不会落回星琮表面,AB正确.竖直向上抛出物111赫寸,物体不落回星球表面的条件是到达无穷远时颜MM吁零,由能量守恒有:/二:加行一竿兰久绪合当1二%可得2此产叼之,=而=2产,C错误D正确.模型演练13.已知地球半径为R,质量为M自转角速度为,地面重力加速度为g,万有引力常量为G,地球同步卫星的运行速度为v,则第一宇宙速度的值不可表示为D. 4GMg答案:C

26、解析:第一宇宙速度可表示为VI湎,A正确C错误.由同步卫星的运行可知:GMm2v 力m及rA.RgB.v3/RC.R/GMVr有GM-,故有VIv3/R,B正确.由2mg有R/,故viJgR4PGMg,DR2g正确,答案为C.14.由于地球的自转,使得静止在地面的物体绕地轴做匀速圆周运动。对于这些做匀速圆周运动的物体,以下说法正确的是A.向心力指向地心B.速度等于第一宇宙速度C.加速度等于重力加速度D.周期与地球自转的周期相等答案:D解析:绕地轴做匀速圆周运动的物体,只有在赤道上的物体向心力才指向地心,速度远小于第一宇宙速度(近地卫星的速度,加速度小于重力加速度,但周期等于地球的自转周期,故A

27、、BC错误,D正确15.已知地球质量为M半彳仝为R,自转周期为T,地球同步卫星质量为m引力常量为G有关同步卫星,下列表述正确的是A.卫星距离地面的高度为3 GMT2B.卫星的运行速度小于第一宇宙速度C.卫星运行时受到的向心力大小为GMmRD.卫星运行的向心加速度小于地球表面的重力加速度答案:BD解析:根据O 一 (RD2犷-=m(A 错,由 GAtmv1 丁7 .T = mE正确,由 (& +用工 J2 + HC错D对.MmG=mg.(R+Hp(ii)椭圆轨道及变轨时的运动(I)椭圆轨道运动除了天体经过椭圆轨道的两个长轴端点时,中心天体对运行天体的万有引力一部分(垂直于速度方向上分力)提供运行

28、天体所需向心力,改变天体的运行方向;另一部分(沿速度方向上的分力)改变天体的速率.在椭圆两个长轴端点处,中心天体对运行天体的万有引力恰好提供其所需向心力,但需注意两端点处的轨道半径是椭圆在该处的曲率半径,而不是该点到中心天体间的距离.运转天体沿椭圆轨道远离中心天体时,动能减小、势能增加,只受到中心天体的万有引力时总机械能不变涉及运动时间问题时可利用开普勒第三定律(II)变轨运动天体从低轨道运动到高轨道上时,首先要在低轨道上加速即向运动的反方向喷气,瞬间加速后进入椭圆转移轨道而远离地球,此过程中速度逐渐减小.到达椭圆上远地点后再次加速而进入圆形高轨道天体从高轨道上向低轨道上转移时操作过程则相反同

29、一轨道上同向运行的两颗人造卫星,后者要追上前者,需首先将后者瞬间减速使进入低轨道,进入低轨道后角速度反而较在原轨道上时大,然后在合适的时机再将其加速,使其恢复到原轨道上而达到目的.例9.一人造地球卫星质量为解其绕地球运动的轨道为椭圆轨道,它在近地点时到地心的距离为ri,速度为vi,加速度为ai,在远地点时,到地心的距离为2,速度为V2,加速度为a2,则下列关系式正确的是A.v1=2B.二1C.亘=(殳)2D.亘=(2v,1v:r2a2r1a22答案:C解析:在近地点和远地点,椭圆轨道的曲率半径相同,设为,则由牛顿第二定律有GMmmma、1GMm222mma2,两式联立可得上、,(-2)2故只有

30、C正确.v21a21例10.2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道I进入椭圆轨道n,B为轨道n上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有(A)在轨道n上经过A的速度小于经过B的速度(B)在轨道n上经过A的动能小于在轨道I上经过A的动能(C)在轨道n上运动的周期小于在轨道I上运动的周期(D)在轨道n上经过A的加速度小于在轨道I上经过A的加速度答案:ABC解析;由肓僵守恒知从A到B势靛弑少,济缱大jA正确,由高轨道进入低轨道时需激速5正确.由开普勒第三定律知C正确.经过A苴时都是只受到而有引力的作用,加速度都等于该处的重力加速度,D错职例11.

31、2008年12月,天文学家们通过观测的数据确认了银河系中央的黑洞“人马座A*”的质量与太阳质量的倍数关系。研究发现,有一星体S2绕人马座A*做椭圆运动,其轨道半长轴为9.50102天文单位(地球公转轨道的半径为一个天文单位),人马座A*就处在该椭圆的一个焦点上。观测得到S2星的运行周期为15.2年。(1)若将S2星的运行轨道视为半径r=9.50102天文单位的圆轨道,试估算人马座A*的质量MA是太阳质量M的多少倍(结果保留一位有效数字);(2)黑洞的第二宇宙速度极大,处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚。由于引力的作用,黑洞表面处质量为m的粒子具有势能为

32、Ep=-GMm(设粒子在离黑洞无限R远处的势能为零),式中MkR分别表示黑洞的质量和半径。已知引力常量G=6.710-11NI-m2/kg2,光速c=3.0108m/s,太阳质量Ml=2.01030kg,太阳半径R=7.0108m,不考虑相对论效应,利用上问结果,在经典力学范围内求人马座A*的半径R与太阳半径Rg之比应小于多少(结果按四舍五入保留整数)。答案:(1)4X106(2)17解析:Cl2星绕大马座A做圆周运动的向心力由人马座A,对S2星的万有引力提供,漫S2星的盾量为町S2,用速度为,周期为匚则设地球质量为皿公转轨道半行为空,周期为兀,则综合上述三式得MaMS式中2TeTe=1 年r e=1天文单位代入数据可得MaMs4 106(2)引力对粒子作用不到的地方即为无限

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论