版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角恒等变换综合编稿:丁会敏审稿:王静伟【学习目标】1、会用向量的数量积推导出两角差的余弦公式2、能利用两角差的余弦公式导出两角差的正弦、正切公式3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【知识网络】【要点梳理】要点一:两角和、差的正、余弦、正切公式sin()=;cos();tan();要点诠释:1.公式的适用条件(定义域):公式、对任意实数a,3都成立,这表明、是R上的恒等式;公式中,R,且、一k(kZ)22 .正向用
2、公式、,能把和差角()的弦函数表示成单角a,3的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()的弦函数.公式正向用是用单角的正切值表示和差角()的正切值化简.要点二:二倍角公式1.在两角和的三角函数公式S,C,T中,当时,就可得到二倍角的三角函数公式S2,C2,T2:sin2(S2);cos2(C2);tan2(T2).要点诠释:.一.k1 .在公式S2C2中,角a没有限制,但公式T2”中,只有当和一k(kZ)时422才成立;2.余弦的二倍角公式有三种:cos2cos2sin2=2cos21=12sin2;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升哥和扩
3、角降哥的作用.33 .二倍角公式不仅限于2a和a的二倍的形式,其它如4a是2a的二倍,一是一的一倍,3是3-242的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.要点三:二倍角公式的推论22升帚公式:1cos22cos,1cos22sin1 .一降帚公式:sincossin2;221cos2sin;221cos2cos.2要点四:三角恒等变换的基本题型三角式的化简、求值、证明是三角恒等变换的基本题型:1 .三角函数式的化简(1)常用方法:直接应用公式进行降次、消项;切割化弦,异名化同名,异角化同角;三角公式的逆用等.(2)化简要求:能求出
4、值的应求出值;使三角函数种数尽量少;使项数尽量少;尽量使分母不含三角函数;尽量使被开方数不含三角函数.2 .三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如(),2()()等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角.3 .三角等式的证明(1)三角恒等式的证题思路是根据等式
5、两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明.【典型例题】类型一:正用公式已知sinsin(1)(2)求sin2求cos【思路点拨】2,3的值;的值.(1)由题意知,coscos3,25山1y口,然后利用二倍角公式求得3sin2的值.(2)求得22小一一,人、,,然后利用两角差的余弦公式可求解.9【答案】(1)迤(2)(1)Qsinsin22sin(2)Qcoscoscoscoscossin,2sin,得sin举一反三:【变式1】求值:4x29s
6、in15=;sin75=【答案】*其J【解析】sin15sin(6045)sin75sin(3045)cos75cos(3045)【变式2已知tan和tan.5,354.52.232.23cos75=sin60cos45sin30cos45cos30 cos45cos60sin45cos30sin45sin30sin45是方程2x2x60的两个根,求tan()的值.【解析】由韦达定理,得tantantantan3,tan(tantan1)1tantan.8j3兀,12,cos(a0,=_413a),分别求出,sin例2.已知三 vv23,求sin2a的值.5【思路点拨】因为2的正弦值和余弦值,
7、利用两角和的正弦公式可求解.56653冗oc43,-sin(a+3)=,cos(a3)=212一,1345cos(%+3),sin(%3)-1sin2a=sin(a+3)+(a3)=一135665【总结升华】(1)解题中应用了2)式子的变换,体现了灵活解决问题的能力,应着重体会,常见的变换技巧还有),2(2)已知某一个(或两个)角的三角函数值,求另一个相关角的三角函数值,基本的解题策略是从“角的关系式”入手切入或突破.角的关系主要有互余(或互补)关系,和差(为特殊角)关系,倍半关系等对于比较复杂的问题,则需要两种关系的混合运用【变式1】已知sin是第二象限角,且tan(的值.【解析】由724s
8、in是第二象限角,得tan(1tantan(tan(1tan(tan)tantan22tan1tan27244一,且一,求cos(2+一)的值.5212、-2,、, ,7)2cos()1121225Jsin2(.2724、31、2一()2252550类型二:逆用公式例3.求值:13.(1)sin24cos36cos24cos54;(2)cossin;212212【思路点拨】题目中涉及到的角并非特殊角,而从式子的结构出发应逆用和角公式等先化简再计算.(1)若将式中的cos54改写为sin36则恰为两角和的正弦;(2)中将其转化为特殊角的三角函数值,然后可以逆用公式;(3)利用tan451将1ta
9、n15视为tan45tan15,将1tan15视为1tan45tan15,则式子恰为两角和的正切.【答案】(1)(2)(3)J322【解析】把式中某函数作适当的转换之后,再逆用两角和(差)正(余)弦公式,二倍角公式等,即所谓“逆用公式”.【解析】角的关系式:2-cos()12sin2(一12一2(12)(和差与倍半的综合关系)12435,二sin(122sin()cos(12122425【变式2】已知cos(【答案31_250cos2(3)1tan7501tan75(1)原式=sin24cos36cos24sin36sin(2436)(2)原式=sin30cos15cos30sin15sin(
10、3015)(3)原式tan4500tan15:1tan450tan150【总结升华】tan(450150)tan6003.1cos(2H).cos2(12cos2(2辅助角公式:asinbcosa2b2sin(在公式变形过程中自然确定【变式1】求值:(1)sin164osin224osin254osin314o;(2)00sin20cos1100.re。cos160sin70;(3)sin3470cos148osin770cos58o【答案】(1)1/2(2)1(3)1/2【解析】(1)原式sin16osin44ocos16ocos44ocos(16o44o)(2)原式=.一0一0sin20c
11、os70一0.一0cos20sin70-0sin(20700)(3)原式=cos74osin440sin740cos4400sin7444o0sin30、.1【变式2】下列各式中,值为1的是(2A.cos15sin15B.22cos12C.1cos30D.tan22.52tan22.5【解析】cos15sin151.sin30222cos112cos-6,32,1cos30cos15tan22.51tan222.5例4.求值:2tan22.51tan222.511一tan452(1)cos36cos72;(2)2coscos-77【思路点拨】问题的特征是角存在倍角关系,以最小角的正弦.【答案】
12、(1)1/41/8【解析】3cos-7且都是余弦的乘积.方法是分子分母(分母视为1)同乘(1)原式=sin360cos360cos7201sin720cos72sin360sin3601sin14404sin3602,4、(2)原式-coscos-cos(一)77724sincoscoscos7777sin7.224sincoscos7772sin7.8sin78sin718【总结升华】此种类型题比较特殊,特殊在:余弦相乘;后一个角是前一个角的2倍与最小角的和与差是.三个条件缺一不可.另外需要注意2的个数.应看到掌握了这些方法后可解决一类问题,若通过恰当的转化,转化成具有这种特征的结构,则可考
13、虑采用这个方法.举一反三:【变式】求值:cos20cos40cos802sin20cos20cos40cos80原式-2sin2000000=2sin40cos40cos802sin80cos8022sin2008sin200sin16001-0一,8sin208类型三:变用公式例5.求值:(1)tan200tan400百tan200tan400;(2)(1tan20)(1tan430)【思路点拨】表示两个正切的和,可以“凑”公式的变形:tan()(1tantan).tantantantan1tantan(1 tantan)24coscoscos7772倍;最大角的变形:tan20tan40.
14、3(1tan200tan400).(1)中204060,又tan(200400)tan200tan40033,1tan20Otan40【答案】(1)邪(2)2【解析】00_0000(1)原式tan(2040)(1tan20tan40),3tan20tan40.33tan20tan403tan20tan40.3.0000(2)原式=1tan2tan43tan2tan431tan(20430)(1tan20tan430)tan20tan43011tan20tan430tan20tan4302【总结升华】 本题是利用了两角和正切公式的变形, 找出tantan,tantan与tan()三者间的关系,
15、进行转化, 即所谓“变用公式”解决问题;变用公式在一些解三角问题中起着重要作用,需灵活掌握.但它是以公式原型为基础,根据题目需要而采取的办法,如:tan451,sin2cos21.举一反三:tan22otan23otan22otan230=.【答案】(1)1(2)1【解析】,lc0cos100、.3sin100sin500cos10.c-0,-0.0.“00sin30cos10cos30sin10=2sin500cos100000八.0sin402cos40sin402sin5000cos10cos1000sin80cos10,001cos10cos10【变式1】求值:【答案】1例6.化简:(
16、1)sin50(1、,3tan10【思路点拨】(1)题中首先“化切为弦”);(2)-2,2cos1_22t叫)sin(-),同时用好“50”和“40”的互余关系,注意逆用和角公式化简;(2)题初看有“化切为弦”,“降哥”等诸多想法,但首先应注意到(4)(4)a这个关系.(1)原式sin500(13呼cos100(2)原式=2tan(4cos22)sin-()24cos2+B)展开,代入数据即可.13【答案】(1)1/5(2)1385【解析】(1)由丁=2p=10P得亚=1w52sin(-)4cos(了)cos22/cos(42sin(4cos2)c%)cos2sin(2)cos21【总结升华】
17、(1)三角变换所涉及的公式实际上正是研究了各种组合的角(如和差角,倍半角等)的三角函数与每一单角的三角函数关系.因而具体运用时,注意对问题所涉及的角度及角度关系进行观察.(2)三角变换中一般采用21cos2.2cos,sin2举一反三:【变式1化简:“降次”、“化弦”、“通分”的方法;在三角变换中经常用到降哥公式:1cos2(1)sin10【答案】(1)【解析】sin804(3)10tan10cos500(1)原式=cos10o3sin10o(2)原式=sin10o1cos10sin10(oosin10cos10cos500cos40cos1001sin4002cos600cos20sin10
18、0sin8002cos30sin800类型四:三角函数知识的综合应用4sin(30o100)sin20o2cos40cos80.cc0sin80cos10J3.sin80例7.已知函数f(x)2cos(一)(其中60,xR)的最小正周期为10(1)求的值;(2)01f(56516+/)一,f(5一)一,求cos(5617)的值.【思路点拨】(1)由丁=10兀可得3 的值;(2)化简所给的已知条件,求得cosa、sin(3的值,整cos(OC(2)由(1)知f(x)=2cos(-x+p)5651315Ppp6f(5a+)=2cos(5a+)+=2cos(a+)=-2sina=35362534一,cosa=一555p、cr15p、pi,16)=2cos(5b-)+=2cosb=656617815sinb=1717、.4831513)coscossinsin51751785(1)给值求角的本质还
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工素养提升培训总结报告
- 责任心文化宣传
- 新生儿溶血病检验课件
- 术后血压低的护理
- 工程抵顶房屋转让协议书
- 《如何使你的W》课件
- 《拆题培训图》课件
- 2024年度软件著作权转让与许可使用合同3篇
- 《如何描述问题》课件
- 扬尘防治安全培训
- 智慧供热解决方案
- 2021年1月广东省普通高中学业水平考试英语试卷(word版含答案)
- WST6612020静脉血液标本采集指南课件
- 人民医院机构编制情况汇报材料
- 大连市12处县级以上饮用水水源保护区区划方案
- 反求设计与创新设计ppt课件
- 《子宫肌瘤护理》PPT课件(完整版)
- 关于猫的资料简介
- 探伤报告格式模板
- 河北2022年度省级产业技术研究院建设申报指南.docx
- 卧式常压热水锅炉使用说明书
评论
0/150
提交评论