第二章 电路分析基础_第1页
第二章 电路分析基础_第2页
第二章 电路分析基础_第3页
第二章 电路分析基础_第4页
第二章 电路分析基础_第5页
已阅读5页,还剩75页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章第二章 电路分析基础电路分析基础上海大学上海大学 自动化系自动化系2013.102013.101第二章第二章 电路分析基础电路分析基础 2.1 电路的基本定律电路的基本定律 2.2 电路的分析方法电路的分析方法 2.3 电路的暂态分析电路的暂态分析 2.4 正弦交流电路正弦交流电路2.5 三相正弦交流电路三相正弦交流电路22.1.1 2.1.1 电阻的串联、并联和串并联电阻的串联、并联和串并联(1 1) 电路特点电路特点1. 1. 电阻串联电阻串联( ( Series Connection of Resistors ) )+_R1R n+_U ki+_u1+_unuRk(a) (a) 各

2、电阻顺序连接,流过同一电流各电阻顺序连接,流过同一电流 ( (KCL) );(b) (b) 总电压等于各串联电阻的电压之和总电压等于各串联电阻的电压之和 ( (KVL)L)。nkuuuu 13 由欧姆定律由欧姆定律结论:结论:等效等效串联电路的总电阻等于各分电阻之和。串联电路的总电阻等于各分电阻之和。 (2) (2) 等效电阻等效电阻u+_R e qi+_R1R n+_U ki+_u1+_unuRkiRiRRiRiRiRueqnnK )(11knkknkeqRRRRRR 114(3) (3) 串联电阻的分压串联电阻的分压说明电压与电阻成正比,因此串连电阻电路可作分压电路说明电压与电阻成正比,因

3、此串连电阻电路可作分压电路+_uR1R2+-u1-+u2i 注意方向注意方向 !uuRRRuRiRueqkeqkkk 例例两个电阻的分压:两个电阻的分压:uRRRu2111 uRRRu2122 5(4) 功率功率p1=R1i2, p2=R2i2, pn=Rni2p1: p2 : : pn= R1 : R2 : :Rn总功率总功率 p=Reqi2 = (R1+ R2+ +Rn ) i2 =R1i2+R2i2+ +Rni2 =p1+ p2+ pn(1) 电阻串连时,各电阻消耗的功率与电阻大小成正比电阻串连时,各电阻消耗的功率与电阻大小成正比(2) 等效电阻消耗的功率等于各串连电阻消耗功率的总和等效

4、电阻消耗的功率等于各串连电阻消耗功率的总和表明表明62. 2. 电阻并联电阻并联 (Parallel Connection)(Parallel Connection)inR1R2RkRni+ui1i2ik_(1) (1) 电路特点电路特点(a) (a) 各电阻两端分别接在一起,两端为同一电压各电阻两端分别接在一起,两端为同一电压 ( (KVL) );(b) (b) 总电流等于流过各并联电阻的电流之和总电流等于流过各并联电阻的电流之和 ( (KCL) )。i = i1+ i2+ + ik+ +in7等效等效由由KCL:i = i1+ i2+ + ik+ +in=u/R1 +u/R2 + +u/R

5、n=u(1/R1+1/R2+1/Rn)=uGeqG =1 / R为电导为电导(2) (2) 等效电阻等效电阻+u_iReq等效电导等于并联的各电导之和等效电导等于并联的各电导之和inR1R2RkRni+ui1i2ik_knkkneqGGGGGG 121keqneqeqRRRRRGR 即即1111218(3 3) 并联电阻的电流分配并联电阻的电流分配eqeq/GGRuRuiikkk 对于两电阻并联,有:对于两电阻并联,有:R1R2i1i2i电流分配与电导成正比电流分配与电导成正比iGGikkeq 2122111111RRiRiRRRi )(11112112122iiRRiRiRRRi 21212

6、1211111RRRRRRRRReq 9(4 4) 功率功率p1=G1u2, p2=G2u2, pn=Gnu2p1: p2 : : pn= G1 : G2 : :Gn总功率总功率 p=Gequ2 = (G1+ G2+ +Gn ) u2 =G1u2+G2u2+ +Gnu2 =p1+ p2+ pn(1) 电阻并联时,各电阻消耗的功率与电阻大小成反比电阻并联时,各电阻消耗的功率与电阻大小成反比(2) 等效电阻消耗的功率等于各串联电阻消耗功率的总和等效电阻消耗的功率等于各串联电阻消耗功率的总和表明表明103. 3. 电阻的串并联电阻的串并联 例例电路中有电阻的串联,又有电阻的并联,电路中有电阻的串联,

7、又有电阻的并联,这种连接方式称电阻的串并联。这种连接方式称电阻的串并联。计算各支路的电压和电流。计算各支路的电压和电流。i1+-i2i3i4i518 6 5 4 12 165V165V165165Vi1+-i2i318 9 5 6 Ai15111651 Viu90156612 Ai518902 Ai105153 Viu60106633 Viu30334 Ai574304. Ai5257105. 11例例解解 用分流方法做用分流方法做用分压方法做用分压方法做RRIIII2312 818141211234V 3412124 UUURI121 V 3244RIURI234求:求:I I1 1 ,I,

8、I4 4 ,U,U4 4+_2R2R2R2RRRI1I2I3I412V_U4+_U2+_U1+12从以上例题可得求解串、并联电路的一般步骤:从以上例题可得求解串、并联电路的一般步骤:(1) 求出等效电阻或等效电导;求出等效电阻或等效电导;(2)应用欧姆定律求出总电压或总电流;)应用欧姆定律求出总电压或总电流;(3)应用欧姆定律或分压、分流公式求各电阻上的电流和电压)应用欧姆定律或分压、分流公式求各电阻上的电流和电压以上的关键在于识别各电阻的串联、并联关系!以上的关键在于识别各电阻的串联、并联关系!例例6 6 1515 5 5 5 5 d dc cb ba a求求: Rab , Rcd 1261

9、555/)(abR 45515/)(cdR等效电阻针对电路的某两等效电阻针对电路的某两端而言,否则无意义。端而言,否则无意义。13例例6060 100100 5050 1010 b ba a4040 8080 2020 求求: Rab100100 6060 b ba a4040 2020 100100 100100 b ba a2020 6060 100100 6060 b ba a120120 2020 Rab7070 14例例1515 2020 b ba a5 5 6 6 6 6 7 7 求求: Rab1515 b ba a4 4 3 3 7 7 1515 2020 b ba a5 5 6

10、 6 6 6 7 7 1515 b ba a4 4 1010 Rab10 0 缩短无电阻支路缩短无电阻支路15l ui 关系关系满足欧姆定律满足欧姆定律 (Ohms Law)GuRui iuR uiu、i 取关联取关联参考方向参考方向Rui+-伏安特性为一条伏安特性为一条过原点的直线过原点的直线Riu 2.1.2 2.1.2 欧姆定律欧姆定律2.1 电路的基本定律电路的基本定律 16(2) 如电阻上的电压与电流参考方向非关联如电阻上的电压与电流参考方向非关联 公式中应冠以负号公式中应冠以负号注注(3) 说明线性电阻是无记忆、双向性的元件说明线性电阻是无记忆、双向性的元件欧姆定律欧姆定律(1)

11、只适用于线性电阻,只适用于线性电阻,( R 为常数)为常数)则欧姆定律写为则欧姆定律写为u R i i G u公式和参考方向必须配套使用!公式和参考方向必须配套使用!Rui+-172.1.3 2.1.3 基尔霍夫定律基尔霍夫定律 ( Kirchhoff( Kirchhoffs Laws )s Laws )基尔霍夫定律包括基尔霍夫电流定律基尔霍夫定律包括基尔霍夫电流定律 ( ( KCL ) )和基尔霍夫电压定律和基尔霍夫电压定律( ( KVL ) )。它反。它反映了电路中所有支路电压和电流所遵循的基本映了电路中所有支路电压和电流所遵循的基本规律,是分析集总参数电路的基本定律。基尔规律,是分析集总

12、参数电路的基本定律。基尔霍夫定律与元件特性构成了电路分析的基础。霍夫定律与元件特性构成了电路分析的基础。181. 1. 几个名词几个名词电路中通过同一电流的分支。电路中通过同一电流的分支。(b)三条或三条以上支路的连接点称三条或三条以上支路的连接点称为节点。为节点。( ( n n ) )b=3an=2b+_R1uS1+_uS2R2R3(1)支路)支路 (branch)电路中每一个两端元件就叫一条支路电路中每一个两端元件就叫一条支路i3i2i1(2) (2) 节点节点 (node)(node)b=519由支路组成的闭合路径。由支路组成的闭合路径。( ( l ) )两节点间的一条通路。由支路构成。

13、两节点间的一条通路。由支路构成。对对平面电路平面电路,其内部不含任何支路的回路称网孔。,其内部不含任何支路的回路称网孔。l=3+_R1uS1+_uS2R2R3123(3) (3) 路径路径(path)(path)(4) (4) 回路回路(loop)(loop)(5) (5) 网孔网孔(mesh)(mesh)网孔是回路,但回路不一定是网孔网孔是回路,但回路不一定是网孔202. 2. 基尔霍夫电流定律基尔霍夫电流定律 ( (KCL) )令流出为令流出为“+”+”,有:,有:例例 在电路中,任意时刻,对任意结点流出或流入该结点电流在电路中,任意时刻,对任意结点流出或流入该结点电流的代数和等于零。的代

14、数和等于零。 mkti10)( 出出入入iior 流进的电流进的电流等于流流等于流出的电流出的电流1i5i4i3i2i054321 iiiii54321iiiii 211 3 25i6i4i1i3i2i0641 iii例例0542 iii0653 iii三式相加得:三式相加得:0321 iii表明表明KCL可推广应用于电路中包可推广应用于电路中包围多个结点的任一闭合面围多个结点的任一闭合面明确明确(1) KCL是电荷守恒和电流连续性原理在电路中任是电荷守恒和电流连续性原理在电路中任 意结点处的反映;意结点处的反映;(2) KCL是对支路电流加的约束,与支路上接的是是对支路电流加的约束,与支路上

15、接的是 什么元件无关,与电路是线性还是非线性无关;什么元件无关,与电路是线性还是非线性无关;(3)KCL方程是按电流参考方向列写,与电流实际方程是按电流参考方向列写,与电流实际 方向无关。方向无关。22(2 2)选定回路绕行方向,)选定回路绕行方向, 顺时针或逆时针顺时针或逆时针. .U1US1+U2+U3+U4+US4= 03. 3. 基尔霍夫电压定律基尔霍夫电压定律 ( (KVL) ) 在在集总参数电路中,任一时刻,集总参数电路中,任一时刻,沿任一闭合路径绕沿任一闭合路径绕行,各支路电压的代数和等于零行,各支路电压的代数和等于零。 mktu10)( 升升降降uuor I1+US1R1I4_

16、+US4R4I3R3R2I2_U3U1U2U4(1 1)标定各元件电压参考方向)标定各元件电压参考方向 U2+U3+U4+US4=U1+US1 或:或:R1I1+R2I2R3I3+R4I4=US1US423例例KVL也适用于电路中任一假想的回路也适用于电路中任一假想的回路aUsb_-+U2U1SabUUUU 21明确明确(1) KVL的实质反映了电路遵的实质反映了电路遵 从能量守恒定律从能量守恒定律;(2) KVL是对回路电压加的约束,是对回路电压加的约束,与回路各支路上接的是什么元件无关与回路各支路上接的是什么元件无关,与电路是线性还是非线性无关;,与电路是线性还是非线性无关;(3)KVL方

17、程是按电压参考方向列写,与电压实际方程是按电压参考方向列写,与电压实际 方向无关。方向无关。24图示电路:求图示电路:求U和和I。4A2A3V2V3 UI例例2U1解:解:I=2- -4= - -2AU1 = 3I = - -6VU+U1+3- -2=0,U=5V或或U2- -3- -U1 = 5V254. 4. KCL、KVL小结:小结:(1) (1) KCL是对支路电流的线性约束,是对支路电流的线性约束,KVL是对是对回回路电路电压的线性约束。压的线性约束。(2) (2) KCL、KVL与组成支路的元件性质及参数无关。与组成支路的元件性质及参数无关。(3)(3) KCL表明在每一节点上电荷

18、是守恒的;表明在每一节点上电荷是守恒的;KVL是是能能量守恒量守恒的具体体现的具体体现( (电压与路径无关电压与路径无关) )。(4) (4) KCL、KVL只适用于集总参数的电路。只适用于集总参数的电路。26UA =UB? AB+_1111113+_22.? AB+_1111113+_21.UA =UB?27Ai523 )(A3A2 ? i 3 3 5 1 41。Vu1552010 V5 ? u V10 V202。+-4V5Vi =?3 3. .+-4V5V1A+-u =?4.4.Aii3543 Vu1275 3 3 28l 线性电路的一般分析方法线性电路的一般分析方法 (1) 普遍性:对任

19、何线性电路都适用。普遍性:对任何线性电路都适用。 复杂电路的一般分析法就是根据复杂电路的一般分析法就是根据KCL、KVL及元件电压及元件电压和电流关系列方程、解方程。根据列方程时所选变量的不同和电流关系列方程、解方程。根据列方程时所选变量的不同可分为支路电流法、回路电流法和节点电压法。可分为支路电流法、回路电流法和节点电压法。(2)元件的电压、电流约束特性。元件的电压、电流约束特性。(1)电路的连接关系电路的连接关系KCL,KVL定律。定律。l 方法的基础方法的基础(2) 系统性:计算方法有规律可循。系统性:计算方法有规律可循。2.2 电路的分析方法电路的分析方法 292.2.1 2.2.1

20、支路电流法支路电流法 (branch current method )(branch current method )对于有对于有n n个节点、个节点、b b条条支路的电路,要求解支路电支路的电路,要求解支路电流流, ,未知量未知量共有共有b b个个。只要。只要列出列出b b个独立的个独立的电路方程,便电路方程,便可以求解这可以求解这b b个变量。个变量。以各支路电流为未知量列写电路方以各支路电流为未知量列写电路方程分析电路的方法。程分析电路的方法。1 1. 支路电流法支路电流法2 2. 独立方程的列写独立方程的列写(1)从电路的)从电路的n个结点中任意选择个结点中任意选择n-1个结点列写个结

21、点列写KCL方程方程(2)选择基本回路列写)选择基本回路列写b-(n-1)个个KVL方程方程30R1R2R3R4R5R6+i2i3i4i1i5i6uS1234例例0621 iii1320654 iii0432 iii有有6个支路电流,需列写个支路电流,需列写6个方程。个方程。KCL方程方程:取网孔为基本回路,沿顺时取网孔为基本回路,沿顺时针方向绕行列针方向绕行列KVL写方程写方程:0132 uuu0354 uuuSuuuu 651结合元件特性消去支路电压得:结合元件特性消去支路电压得:0113322 iRiRiR0335544 iRiRiRSuiRiRiR 665511回路回路1回路回路2回路

22、回路312331支路电流法的一般步骤:支路电流法的一般步骤:(1) (1) 标定各支路电流(电压)的参考方向;标定各支路电流(电压)的参考方向;(2) (2) 选定选定( (n n1)1)个节点个节点,列写其,列写其KCL方程;方程;(3) (3) 选定选定b b( (n n1)1)个独立回路,列写其个独立回路,列写其KVL方程;方程; ( (元件特性代入元件特性代入) )(4) (4) 求解上述方程,得到求解上述方程,得到b b个支路电流;个支路电流;(5) (5) 进一步计算支路电压和进行其它分析。进一步计算支路电压和进行其它分析。支路电流法的特点:支路电流法的特点:支路法列写的是支路法列

23、写的是 KCL和和KVL方程,方程, 所以方程列所以方程列写方便、直观,但方程数较多,宜于在支路数不多的写方便、直观,但方程数较多,宜于在支路数不多的情况下使用。情况下使用。32 = + +含电流源电路的支路电流法含电流源电路的支路电流法 R1 + _ I1 R2 a b I2 IS US+ _ Uab 1. 设定电流参考方向设定电流参考方向 2. 列写列写KCL独立方程独立方程节点节点a: I1 + I2 + IS= 0(1) 3. 列写剩余的列写剩余的 m - ( n 1 )个个KVL独立方程独立方程回路:回路: R1I1 - R2I2 - US = 0 与恒流源串联的电阻是否出现在数学模

24、型中与恒流源串联的电阻是否出现在数学模型中?+ _ Uab R3 不会出现。不会出现。 (2) ? R3 ( n -1)US R1I1 R3IS Uab 独立方程数独立方程数 = = 未知电流支路数未知电流支路数 = = 支路数支路数 - - 含恒流源的支路数含恒流源的支路数33例例节点节点a:I1I2+I3=0(1) n1=1个个KCL方程:方程:列写支路电流方程列写支路电流方程.(电路中含有理想电流源)电路中含有理想电流源)解解1.(2) b( n1)=2个个KVL方程:方程:11I2+7I3= U7I111I2=70-Ua1270V6A7 b+I1I3I27 11 增补方程:增补方程:I

25、2=6A+ +U_ _1解解2.70V6A7 b+I1I3I27 11 a由于由于I2已知,故只列写两个方程已知,故只列写两个方程节点节点a:I1+I3=6避开电流源支路取回路:避开电流源支路取回路:7I17I3=7034122个个KCL方程方程- - i1- - i2 + i3 = 0 (1)- - i3+ + i4 - - i5 = 0 (2)例例2列写求解图示电路的支路电流方程列写求解图示电路的支路电流方程(含理想电流源支路含理想电流源支路)。i1i3uSiSR1R2R3ba+i2i5i4ucR4n=3 选选c为参考点。为参考点。解解R1 i1- -R2i2 = uS (3)R2 i2+

26、 +R3i3 + + R4 i4 = 0 (4) b=5,由于,由于i5 = iS为已知,只需为已知,只需2个个KVL方程。所以在方程。所以在选择独立回路时,可不选含独立电流源支路的回路。选选择独立回路时,可不选含独立电流源支路的回路。选回路回路1,2列列KVL方程。方程。i5 = iS (5) 352.2.2 2.2.2 节点电压法节点电压法 (node voltage method)(node voltage method)选选节点电压为未知量节点电压为未知量,则,则KVLKVL自动满足自动满足,就无需列写就无需列写KVL 方程。各支路电流、电压可方程。各支路电流、电压可视为结点电压的线性

27、组合,求出节点电压后,视为结点电压的线性组合,求出节点电压后,便可方便地得到各支路电压、电流。便可方便地得到各支路电压、电流。l基本思想:基本思想:以节点电压为未知量列写电路方程分析以节点电压为未知量列写电路方程分析电路的方法。适用于结点较少的电路。电路的方法。适用于结点较少的电路。1.1.节点电压法节点电压法l列写的方程列写的方程节点电压法列写的是结点上的节点电压法列写的是结点上的KCL方方程,独立方程数为:程,独立方程数为:与支路电流法相比,与支路电流法相比,方程数减少方程数减少b-(n- -1)个。个。)(1 n36任意选择参考点:任意选择参考点:其它节点与参考点的电压差其它节点与参考点

28、的电压差即即是是节点电压节点电压( (位位) ),方向为从独立节点指向参考节点。,方向为从独立节点指向参考节点。(uA- -uB)+uB- -uA=0KVL自动满足自动满足说明说明uA- -uBuAuB2 2. 方程的列写方程的列写iS1uSiS3R1i1i2i3i4i5R2R5R3R4+_(1) (1) 选定参考节点,选定参考节点,标明其余标明其余n-1个独个独立节点的电压立节点的电压13237iS1uSiS2R1i1i2i3i4i5R2R5R3R4+_132 (2) (2) 列列KCL方程:方程: iR出出= iS入入i1+i2=iS1+iS2- -i2+ +i4+i3=0把支路电流用结点

29、电压表示:把支路电流用结点电压表示:S2S1n2n1n1iiRuuRu 210432 RuRuuRuun2n3n2n2n1-i3+i5=iS2253SSiRuuRuu n3n3n238整理,得:整理,得:S2S1n2n1)( )(iiuRuRR 2211110111113324322 nuRuRRRuRnn1 )(令令 Gk=1/Rk,k=1, 2, 3, 4, 5上式简记为:上式简记为:G11un1+G12un2 G13un3 = iSn15533111RuiuRRuRS S2n3n2 )()(G21un1+G22un2 G23un3 = iSn2G31un1+G32un2 G33un3 =

30、 iSn3标准形式的结点标准形式的结点电压方程电压方程等效电等效电流源流源39其其中中G11=G1+G2 节点节点1 1的自电导,的自电导,等于接在等于接在节点节点1 1上所上所有有 支路的电导之和。支路的电导之和。 G22=G2+G3+G4 节点节点2 2的自电导,等于接在节点的自电导,等于接在节点2 2上所有上所有 支路的电导之和。支路的电导之和。G12= G21 =-G2 节点节点1 1与节点与节点2 2之间的互电导,等于接在之间的互电导,等于接在 节点节点1 1与节点与节点2 2之间的所有支路的电导之之间的所有支路的电导之 和,和,为负值为负值。自电导总为正,互电导总为负。自电导总为正

31、,互电导总为负。G33=G3+G5 节点节点3 3的自电导,等于接在节点的自电导,等于接在节点3 3上所有上所有支路的电导之和。支路的电导之和。G23= G32 =-G3 节点节点2 2与节点与节点3 3之间的互电导,等于接在节之间的互电导,等于接在节 点点1 1与节点与节点2 2之间的所有支路的电导之和,之间的所有支路的电导之和, 为负值为负值。40iSn2=-iS2uS/R5 流入节点流入节点2 2的电流源电流的代数和。的电流源电流的代数和。iSn1=iS1+iS2 流入节点流入节点1 1的电流源电流的代数和。的电流源电流的代数和。流入节点取正号,流出取负号。流入节点取正号,流出取负号。1

32、n11Rui 4n2Rui 43n3n2Ruui 32n2n1Ruui 25SRuuin 35由节点电压方程求得各节点电压后即可求得各支路电由节点电压方程求得各节点电压后即可求得各支路电压,各支路电流可用节点电压表示:压,各支路电流可用节点电压表示:413 3、求解步骤、求解步骤(1) 设定参考点及节点电压设定参考点及节点电压 U1、U2 I2 I1 I4 I3 _ R1+ US IS1R2IS2R4 R3 3 2 1 U1 U2 (2) 列写列写KCL独立方程独立方程 节点节点1:节点节点2:IS1 + I4 - I1 - I3 =0I3 - I2 - I4 - IS2 = 0(1)(3)

33、以节点电压表示各支路电流以节点电压表示各支路电流222RUI 421S4)(RUUUI 111RUI 3213RUUI (4 ) 将将(2)式代入式代入(1)式,整理得式,整理得(2)(3) )11()111(4SS12431431RUIURRURRR (4) )11()111(4SS21432432RUIURRURRR (5) 联立、联立、 求解求解节点节点1节点节点242I2 I1 I4 I3 _ R1+ US IS1R2IS2R4 R3 R1R4 R3 R4 R3 列写节点电压方程规律列写节点电压方程规律:4SRU R4 + _ 1 2 2 1 U1 U2 )111(431RRR 1U)

34、11(43RR 2US1I4SRU (3) )111(431RRR )11(43RR 1U2U节点节点14SRUS1I 自电导自电导 互电导互电导 电流代数和电流代数和R1R4 R3 R1R4 R3 R4 R3 R4 R3 本节点电压乘以自电导减去相邻节点电压与本节点电压乘以自电导减去相邻节点电压与互电导之积等于流入该节点的电流源互电导之积等于流入该节点的电流源(或等效电流或等效电流源源)电流的代数和电流的代数和自电导自电导互电导互电导43一一般般情情况况G11un1+G12un2+G1,n- -1un,n- -1=iSn1G21un1+G22un2+G2,n-1un,n-1=iSn2 Gn-

35、 -1,1un1+Gn- -1,2un2+Gn-1,nun,n- -1=iSn,n- -1其中其中Gii 自电导,自电导,等于接在节点等于接在节点i上所有支路的电导之和上所有支路的电导之和( (包括电压源与电阻串联支路包括电压源与电阻串联支路) )。总为正。总为正。 当电路不含受控源时,系数矩阵为对称阵。当电路不含受控源时,系数矩阵为对称阵。iSni 流入节点流入节点i i的所有电流源电流的代数和的所有电流源电流的代数和( (包括包括由由电压源与电阻串联支路等效的电流源电压源与电阻串联支路等效的电流源) )。Gij = Gji互电导,互电导,等于接在节点等于接在节点i与节点与节点j之间的所之间

36、的所支路的电导之和,支路的电导之和,总为总为负。负。44节点法的一般步骤:节点法的一般步骤:(1) (1) 选定参考节点,标定选定参考节点,标定n-1 1个独立节点;个独立节点;(2) (2) 对对n-1-1个独立节点,以节点电压为未知量,个独立节点,以节点电压为未知量,列写其列写其KCL方程;方程;(3) (3) 求解上述方程,得到求解上述方程,得到n-1-1个节点电压;个节点电压;(5) (5) 其它分析。其它分析。(4) (4) 求各支路电流求各支路电流( (用用节点电压节点电压表示表示) );45I2 I1 I4 I3 _ R1+ US IS1R2IS2R4 R3 2 1 U1 U2

37、R5 2. 当电路中某两个结点间只有理想电压源时当电路中某两个结点间只有理想电压源时 1. 当电路中某两个节点间为理想电流源与电阻串联时当电路中某两个节点间为理想电流源与电阻串联时特殊情况特殊情况 U3 3 ,可将其中一个节,可将其中一个节点选为参考点。点选为参考点。 ,该电,该电阻不在节点电压方程中出现。阻不在节点电压方程中出现。I3 - I2 - I4 - IS2 = 0? US 46ISR3R4baU2U1R1R2 + _+ _I1I2I3举例举例(2(2个节点的节点电压法)个节点的节点电压法)解解: :2211Sa321)111(RURUIURRR 321S2211a111RRRIRU

38、RUU 已知电路结构和元件参数已知电路结构和元件参数 求各支路电流及电流源的端电压。求各支路电流及电流源的端电压。 设定节点设定节点 b为参考点为参考点 列写节点列写节点 a 的电压方程,并求的电压方程,并求Ua 根据根据KVL及欧姆定律求各支路电流及欧姆定律求各支路电流11a1RUUI 22a2RUUI 3a3RUI - - 弥尔曼定理弥尔曼定理 nmmlkkRIU11Sa1_+U S4aIRUU 4748321Sab111RRRIREU V18V316112171242ab UA2 A1218421242ab1 UIA3 A618 6 ab2 UIA6 3183ab3 UI 电路中有一条支

39、路是电路中有一条支路是理想电流源,故节点电理想电流源,故节点电压的公式要改为压的公式要改为49例例2:用节点电压法求图示电路各支路电流:用节点电压法求图示电路各支路电流。 +US1 I1R1I2R2 US2+IS+U166V8V0.4AI3R310V410161114 . 068161113212211RRRIRURUUSSS解:解:求出求出U U 后,可用欧姆定律求各支路电流。后,可用欧姆定律求各支路电流。50 +US1 I1R1I2R2 US2+IS+U166V8V0.4AI3R310A2146111RUUISA2648222RUUISA4 . 010433RUI51R2(c)R3E1+R

40、1I 1I 2I 35211332213232111ERRRRRRRRR/RREI R2(c)R3E2+R1I 1I 2I 32133221331223131/ERRRRRRRRRRERRRI 53R2(c)R3E1+R1I 1I 2I 3213322131133221321)()(ERRRRRRRERRRRRRRRI 同理同理: 222III 333III 541. 叠加定理叠加定理在线性电路中,任一支路的电流在线性电路中,任一支路的电流( (或电压或电压) )可以看成可以看成是电路中每一个独立电源单独作用于电路时,在该支路是电路中每一个独立电源单独作用于电路时,在该支路产生的电流产生的电流

41、( (或电压或电压) )的代数和。的代数和。2.2.3.1 2.2.3.1 叠加定理叠加定理 ( (SuperpositionTheoremSuperpositionTheorem) )2.2.32.2.3 电路定理电路定理 (Circuit Theorems)(Circuit Theorems)2. 2. 几点说明几点说明1. 1. 叠加定理只适用于线性电路。叠加定理只适用于线性电路。2. 2. 一个电源作用,其余电源为零一个电源作用,其余电源为零电压源为零电压源为零短路。短路。电流源为零电流源为零开路。开路。55R1is1R2us2R3us3i2i3+1三个电源共同作用三个电源共同作用R1

42、is1R2R31)(12i)(13iis1单独作用单独作用=3. 3. 功率不能叠加功率不能叠加( (功率为电压和电流的乘积,为电源的功率为电压和电流的乘积,为电源的二次函数二次函数) )。4. 4. u u, ,i i叠加时要注意各分量的参考方向。叠加时要注意各分量的参考方向。5. 5. 含受控源含受控源( (线性线性) )电路亦可用叠加,但叠加只适用于电路亦可用叠加,但叠加只适用于 独立源,受控源应始终保留。独立源,受控源应始终保留。56+ +us2单独作用单独作用us3单独作用单独作用+ +R1R2us2R3+1)(23i)(22iR1R2us3R3+1)(32i)(33i573. 3.

43、 叠加定理的应用叠加定理的应用例例1求电压求电压U.8 12V3A+6 3 2 +U8 3A6 3 2 +U(2)8 12V+6 3 2 +U(1)画出分画出分电路图电路图12V电源作用:电源作用:VU43912)1( 3A电源作用:电源作用:VU63)3/6()2( VU264 解解58例例210V2Au2 3 3 2 求电流源的电压和发出求电流源的电压和发出的功率的功率10VU(1)2 3 3 2 2AU(2)2 3 3 2 Vu21052531 )()(Vu84225322.)( Vu86. WP613286. 画出分画出分电路图电路图为两个简为两个简单电路单电路10V电源作用:电源作用

44、:2A电源作用:电源作用:59例例3u12V2A1 3A3 6 6V计算电压计算电压u。画出分画出分电路图电路图1 3A3 6 u(1)Vu931361 )/()(Viu8126622 )()(12V2A1 3 6 6Vu (2)i (2)Ai2361262 )/()()(Vuuu178921 )()(说明:叠加方式是任意的,可以一次一个独立源单独作用,说明:叠加方式是任意的,可以一次一个独立源单独作用,也可以一次几个独立源同时作用,取决于使分析计算简便。也可以一次几个独立源同时作用,取决于使分析计算简便。3A电流源作用:电流源作用:其余电源作用:其余电源作用:602.2.3.2 2.2.3.

45、2 戴维宁定理和诺顿定理戴维宁定理和诺顿定理 ( (Thevenin-Norton TheoremThevenin-Norton Theorem) )工程实际中,常常碰到只需研究某一支路的电工程实际中,常常碰到只需研究某一支路的电压、电流或功率的问题。对所研究的支路来说,电压、电流或功率的问题。对所研究的支路来说,电路的其余部分就成为一个有源二端网络,可等效变路的其余部分就成为一个有源二端网络,可等效变换为较简单的含源支路换为较简单的含源支路( (电压源与电阻串联或电流电压源与电阻串联或电流源与源与电阻并联支路电阻并联支路), 使分析和计算简化。戴维宁定使分析和计算简化。戴维宁定理和诺顿定理正

46、是给出了等效含源支路及其计算方理和诺顿定理正是给出了等效含源支路及其计算方法。法。611. 1. 戴维宁定理戴维宁定理任何一个线性含源一端口网络,对外电路来说,总任何一个线性含源一端口网络,对外电路来说,总可以用一个电压源和电阻的串联组合来等效置换;此电可以用一个电压源和电阻的串联组合来等效置换;此电压源的电压等于外电路断开时端口处的开路电压压源的电压等于外电路断开时端口处的开路电压uoc,而,而电阻等于一端口的输入电阻(或等效电阻电阻等于一端口的输入电阻(或等效电阻Req)。)。AabiuiabReqUoc+- -u6263642.2.定理的应用定理的应用(1) 开路电压开路电压Uoc 的计

47、算的计算 等效电阻为将一端口网络内部独立电源全部置零等效电阻为将一端口网络内部独立电源全部置零( (电压源电压源短路,电流源开路短路,电流源开路) )后,所得无源一端口网络的输入电阻。后,所得无源一端口网络的输入电阻。常用下列方法计算:常用下列方法计算:(2)等效电阻的计算)等效电阻的计算 戴维宁等效电路中电压源电压等于将外电路断开时的开戴维宁等效电路中电压源电压等于将外电路断开时的开路电压路电压Uoc,电压源方向与所求开路电压方向有关。计算,电压源方向与所求开路电压方向有关。计算Uoc的方法视电路形式选择前面学过的任意方法,使易于计的方法视电路形式选择前面学过的任意方法,使易于计算。算。65

48、23方法更有一般性。方法更有一般性。 当网络内部不含有受控源时可采用电阻串并联和当网络内部不含有受控源时可采用电阻串并联和Y 互换的方法计算等效电阻;互换的方法计算等效电阻;1开路电压,短路电流法。开路电压,短路电流法。3外加电源法(加压求流或加流求压)。外加电源法(加压求流或加流求压)。2abPi+uReqabPi+uReqiuReq iSCUocab+ReqscoceqiuR 66解题步骤:解题步骤:1.1.断开所求支路,确定有源二端网络;断开所求支路,确定有源二端网络;2.2.求有源二端网络的开路电压求有源二端网络的开路电压U Uo o;3.3.求对应无源二端网络的等效电阻求对应无源二端

49、网络的等效电阻R R0 0; 求求R R0 0时,理想电压源要短路,电流源要开路。时,理想电压源要短路,电流源要开路。4.4.作戴维宁等效电路,求待求支路的电流或电压。作戴维宁等效电路,求待求支路的电流或电压。67(1) (1) 外电路可以是任意的线性或非线性电路,外电路外电路可以是任意的线性或非线性电路,外电路发生改变时,含源一端口网络的等效电路不变发生改变时,含源一端口网络的等效电路不变( (伏伏- -安特性等效安特性等效) )。(2) (2) 当一端口内部含有受控源时,控制电路与受控源当一端口内部含有受控源时,控制电路与受控源必须包含在被化简的同一部分电路中。必须包含在被化简的同一部分电

50、路中。注:注:例例1.1.计算计算Rx分别为分别为1.2 、 5.2 时的时的I;IRxab+10V4 6 6 4 解解保留保留Rx支路,将其余一端口支路,将其余一端口网络化为戴维宁等效电路:网络化为戴维宁等效电路:68ab+10V4 6 6 +U24 +U1IRxIabUoc+RxReq(1) 求开路电压求开路电压Uoc = U1 + U2 = - -10 4/(4+6)+10 6/(4+6) = - -4+6=2V+Uoc_(2) 求等效电阻求等效电阻ReqReq=4/6+6/4=4.8 (3) Rx =1.2 时,时,I= Uoc /(Req + Rx) =0.333ARx =5.2 时,时,I= Uoc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论