版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基本初等函数一【要点精讲】1指数与对数运算(1)根式的概念:定义:若一个数的次方等于,则这个数称的次方根。即若,则称的次方根,1)当为奇数时,次方根记作;2)当为偶数时,负数没有次方根,而正数有两个次方根且互为相反数,记作性质:1);2)当为奇数时,;3)当为偶数时,。(2)幂的有关概念规定:1)N*;2); n个3)Q,4)、N* 且性质:1)、Q);2)、 Q);3) Q)。(注)上述性质对r、R均适用。(3)对数的概念定义:如果的b次幂等于N,就是,那么数称以为底N的对数,记作其中称对数的底,N称真数1)以10为底的对数称常用对数,记作;2)以无理数为底的对数称自然对数,记作;基本性质:
2、1)真数N为正数(负数和零无对数);2);3);4)对数恒等式:。运算性质:如果则1);2);3)R)换底公式:1);2)。2指数函数与对数函数(1)指数函数:定义:函数称指数函数,1)函数的定义域为R;2)函数的值域为;3)当时函数为减函数,当时函数为增函数。函数图像:1)指数函数的图象都经过点(0,1),且图象都在第一、二象限;2)指数函数都以轴为渐近线(当时,图象向左无限接近轴,当时,图象向右无限接近轴);3)对于相同的,函数的图象关于轴对称 , , , , ,函数值的变化特征:(2)对数函数:定义:函数称对数函数,1)函数的定义域为;2)函数的值域为R;3)当时函数为减函数,当时函数为
3、增函数;4)对数函数与指数函数互为反函数函数图像:1)对数函数的图象都经过点(0,1),且图象都在第一、四象限;2)对数函数都以轴为渐近线(当时,图象向上无限接近轴;当时,图象向下无限接近轴);4)对于相同的,函数的图象关于轴对称。函数值的变化特征:,.,. (3)幂函数1)掌握5个幂函数的图像特点2)a>0时,幂函数在第一象限内恒为增函数,a<0时在第一象限恒为减函数3)过定点(1,1)当幂函数为偶函数过(-1,1),当幂函数为奇函数时过(-1,-1)当a>0时过(0,0)4)幂函数一定不经过第四象限四【典例解析】题型1:指数运算例1(1)计算:;(2)化简:。解:(1)原
4、式=;(2)原式=。点评:根式的化简求值问题就是将根式化成分数指数幂的形式,然后利用分数指数幂的运算性质求解,对化简求值的结果,一般用分数指数幂的形式保留;一般的进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数为分数运算,同时兼顾运算的顺序。例2(1)已知,求的值解:,又,。点评:本题直接代入条件求解繁琐,故应先化简变形,创造条件简化运算。题型2:对数运算(2).(江苏省南通市2008届高三第二次调研考试)幂函数的图象经过点,则满足27的x的值是 .答案 例3计算(1);(2);(3)解:(1)原式 ;(2)原式 ;(3)分子=;分母=;原式=。点评:这是一组很基本的对数运算的练
5、习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧例4设、为正数,且满足 (1)求证:;(2)若,求、的值。证明:(1)左边;解:(2)由得,由得 由得由得,代入得, 由、解得,从而。点评:对于含对数因式的证明和求值问题,还是以对数运算法则为主,将代数式化简到最见形式再来处理即可。题型3:指数、对数方程例5(江西师大附中2009届高三数学上学期期中)已知定义域为R的函数是奇函数.(1)求a,b的值;(2)若对任意的,不等式恒成立,求k的取值范围.解 (1) 因为是R上的奇函数,所以从而有 又由,解得(2)解
6、法一:由(1)知由上式易知在R上为减函数,又因是奇函数,从而不等式等价于 因是R上的减函数,由上式推得即对一切从而解法二:由(1)知又由题设条件得即 整理得,因底数2>1,故 上式对一切均成立,从而判别式例6(2008广东 理7)设,若函数,有大于零的极值点,则( B )ABCD【解析】,若函数在上有大于零的极值点,即有正根。当有成立时,显然有,此时,由我们马上就能得到参数的范围为.点评:上面两例是关于含指数式、对数式等式的形式,解题思路是转化为不含指数、对数因式的普通等式或方程的形式,再来求解。题型4:指数函数的概念与性质例7设( )A0 B1 C2 D3解:C;,。点评:利用指数函数
7、、对数函数的概念,求解函数的值例8已知试求函数f(x)的单调区间。解:令,则x=,tR。所以即,(xR)。因为f(x)=f(x),所以f(x)为偶函数,故只需讨论f(x)在0,+)上的单调性。任取,且使,则(1)当a>1时,由,有,所以,即f(x)在0,+上单调递增。(2)当0<a<1时,由,有,所以,即f(x)在0,+上单调递增。综合所述,0,+是f(x)的单调增区间,(,0)是f(x)的单调区间。点评:求解含指数式的函数的定义域、值域,甚至是证明函数的性质都需要借助指数函数的性质来处理。特别是分两种情况来处理。题型5:指数函数的图像与应用例9若函数的图象与x轴有公共点,则
8、m的取值范围是( )Am1 B1m<0 Cm1 D0<m1解:,画图象可知1m<0。答案为B。点评:本题考察了复杂形式的指数函数的图像特征,解题的出发点仍然是两种情况下函数的图像特征。例10设函数的取值范围。解:由于是增函数,等价于1)当时,式恒成立;2)当时,式化为,即;3)当时,式无解;综上的取值范围是。点评:处理含有指数式的不等式问题,借助指数函数的性质将含有指数式的不等式转化为普通不等式问题(一元一次、一元二次不等式)来处理题型6:对数函数的概念与性质例11(1)函数的定义域是( )A B C D(2)(2006湖北)设f(x),则的定义域为( )A B(4,1)(1
9、,4) C(2,1)(1,2) D(4,2)(2,4)解:(1)D(2)B。点评:求函数定义域就是使得解析是有意义的自变量的取值范围,在对数函数中只有真数大于零时才有意义。对于抽象函数的处理要注意对应法则的对应关系。例12(2009广东三校一模)设函数.(1)求的单调区间;(2)若当时,(其中)不等式恒成立,求实数的取值范围;(3)试讨论关于的方程:在区间上的根的个数.解 (1)函数的定义域为. 1分由得; 2分 由得, 3分则增区间为,减区间为. 4分(2)令得,由(1)知在上递减,在上递增, 6分由,且, 8分时, 的最大值为,故时,不等式恒成立. 9分(3)方程即.记,则.由得;由得.所
10、以g(x)在0,1上递减,在1,2上递增.而g(0)=1,g(1)=2-2ln2,g(2)=3-2ln3,g(0)g(2)g(1) 10分所以,当a1时,方程无解;当3-2ln3a1时,方程有一个解,当2-2ln2aa3-2ln3时,方程有两个解;当a=2-2ln2时,方程有一个解;当a2-2ln2时,方程无解. 13分字上所述,a时,方程无解;或a=2-2ln2时,方程有唯一解;时,方程有两个不等的解.14分 例13当a>1时,函数y=logax和y=(1a)x的图象只可能是( )解:当a>1时,函数y=logax的图象只能在A和C中选,又a>1时,y=(1a)x为减函数。
11、答案:B点评:要正确识别函数图像,一是熟悉各种基本函数的图像,二是把握图像的性质,根据图像的性质去判断,如过定点、定义域、值域、单调性、奇偶性例14设A、B是函数y= log2x图象上两点, 其横坐标分别为a和a+4, 直线l: x=a+2与函数y= log2x图象交于点C, 与直线AB交于点D。(1)求点D的坐标;(2)当ABC的面积大于1时, 求实数a的取值范围解:(1)易知D为线段AB的中点, 因A(a, log2a ), B(a+4, log2(a+4),所以由中点公式得D(a+2, log2 )。(2)SABC=S梯形AACC+S梯形CCBB- S梯形AABB= log2, 其中A,
12、B,C为A,B,C在x轴上的射影。由SABC= log2>1, 得0< a<22。点评:解题过程中用到了对数函数性质,注意底数分类来处理,根据函数的性质来处理复杂问题。题型8:指数函数、对数函数综合问题例15在xOy平面上有一点列P1(a1,b1),P2(a2,b2),Pn(an,bn),对每个自然数n点Pn位于函数y=2000()x(0<a<1)的图象上,且点Pn,点(n,0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形。(1)求点Pn的纵坐标bn的表达式;(2)若对于每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围;(3)设
13、Cn=lg(bn)(nN*),若a取(2)中确定的范围内的最小整数,问数列Cn前多少项的和最大?试说明理由解:(1)由题意知:an=n+,bn=2000()。(2)函数y=2000()x(0<a<10)递减,对每个自然数n,有bn>bn+1>bn+2。则以bn,bn+1,bn+2为边长能构成一个三角形的充要条件是bn+2+bn+1>bn,即()2+()1>0,解得a<5(1+)或a>5(1)。 5(1)<a<10。(3)5(1)<a<10,a=7bn=2000()。数列bn是一个递减的正数数列,对每个自然数n2,Bn=bn
14、Bn1。于是当bn1时,Bn<Bn1,当bn<1时,BnBn1,因此数列Bn的最大项的项数n满足不等式bn1且bn+1<1,由bn=2000()1得:n20。n=20。点评:本题题设从函数图像入手,体现数形结合的优越性,最终还是根据函数性质结合数列知识,以及三角形的面积解决了实际问题。例16已知函数为常数)(1)求函数f(x)的定义域;(2)若a=2,试根据单调性定义确定函数f(x)的单调性(3)若函数y=f(x)是增函数,求a的取值范围。解:(1)由a0,x0 f(x)的定义域是。(2)若a=2,则设 , 则故f(x)为增函数。(3)设 f(x)是增函数,f(x1)f(x2
15、)即 联立、知a1,a(1,+)。点评:该题属于纯粹的研究复合对函数性质的问题,我们抓住对数函数的特点,结合一般函数求定义域、单调性的解题思路,对“路”处理即可题型9:课标创新题例17对于在区间上有意义的两个函数f(x)与g(x),如果对任意的,均有,则称f(x)与g(x)在上是接近的,否则称f(x)与g(x)在上是非接近的,现有两个函数与,给定区间。(1)若与在给定区间上都有意义,求a的取值范围;(2)讨论与在给定区间上是否是接近的。解:(1)两个函数与在给定区间有意义,因为函数给定区间上单调递增,函数在给定区间上恒为正数,故有意义当且仅当;(2)构造函数,对于函数来讲, 显然其在上单调递减
16、,在上单调递增。且在其定义域内一定是减函数由于,得所以原函数在区间内单调递减,只需保证当时,与在区间上是接近的; 当时,与在区间上是非接近的点评:该题属于信息给予的题目,考生首先理解“接近”与“非接近”的含义,再对含有对数式的函数的是否“接近”进行研究,转化成含有对数因式的不等式问题,解不等式即可。例18设,且,求的最小值。解:令 ,。 由得, ,即, , ,当时,。点评:对数函数结合不等式知识处理最值问题,这是出题的一个亮点。同时考察了学生的变形能力。例19.(2009陕西卷文)设曲线在点(1,1)处的切线与x轴的交点的横坐标为,则的值为A. B. C. D.1答案 B解析 对,令得在点(1,1)处的切线的斜率,在点(1,1)处的切线方程为,不妨设,则, 故选 B.五【思维总结】1(其中)是同一数量关系的三种不同表示形式,因此在许多问题中需要熟练进行它们之间的相互转化,选择最好的形式进行运算.在运算中,根式常常化为指数式比较方便,而对数式一般应化为同应化为同底;2要熟练运用初中学习的多项式各种乘法公式;进行数式运算的难点是运用各种变换技巧,如配方、因式分解、有理化(分子或分母)、拆项、添项、换元等等,这些都是经常使用的变换技巧,必须通过各种题型的训练逐渐积累经验;3解决含指数式或对数式的各种问题,要熟练运用指数、对数运算法则及运算性质,更关键是熟练运用指
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 李玫瑾漫画儿童 心理学
- 法学专业评估整改方案
- 海南省农垦实验中学2024-2025学年高三上学期9月月考地理试题(含答案)
- 宁夏行政职业能力模拟9
- 2018年7月14日安徽省公务员考试面试真题
- 关于成立化工公司投资计划书
- 2015年2月7日山西大同天镇县统计局调查监测中心面试真题
- 河北省公务员面试模拟182
- 安徽行政职业能力模拟38
- 河南行政职业能力测验模拟139
- (完整版)机房安全检查表
- 信息资源建设-习题集(含答案)
- 砌体结构施工实训报告总结
- 20CS03-1一体化预制泵站选用与安装一
- 安全教育不咬手指头
- 2024年4月自考00015英语(二)试题
- (正式版)JBT 14660-2024 额定电压6kV到30kV地下掘进设备用橡皮绝缘软电缆
- 湖北省阳新县枪弹山矿区建筑石料用石灰岩矿矿产资源开发利用与生态复绿方案
- 2023年全国统一高考英语试卷(北京卷)(含答案)
- Unit4ExploringLiteratureIntegratedskills话题作文与课文结合学案高中英语译林版
- 小学生航模知识讲座
评论
0/150
提交评论