版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学三角函数公式汇总(正版)一、任意角的三角函数在角的终边上任取一点,记:,正弦: 余弦:正切: 余切:正割:余割:注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向线段、分别叫做角的正弦线、余弦线、正切线。二、同角三角函数的基本关系式倒数关系:,。商数关系:,。平方关系:,。三、诱导公式、的三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符号。(口诀:函数名不变,符号看象限)、的三角函数值,等于的异名函数值,前面加上一个把看成锐角时原函数值的符号。(口诀:函数名改变,符号看象限)四、和角公式和差角公式 五、二倍角公式二倍角的余弦公式有以下常用
2、变形:(规律:降幂扩角,升幂缩角) ,。六、万能公式(可以理解为二倍角公式的另一种形式),。万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。七、和差化积公式 了解和差化积公式的推导,有助于我们理解并掌握好公式:两式相加可得公式,两式相减可得公式。两式相加可得公式,两式相减可得公式。八、积化和差公式我们可以把积化和差公式看成是和差化积公式的逆应用。九、辅助角公式()其中:角的终边所在的象限与点所在的象限相同,。十、正弦定理(为外接圆半径)十一、余弦定理 十二、三角形的面积公式 (两边一夹角)(为外接圆半径)(为内切圆半径)海仑公式(其中) 十三诱导公式公式一: 设为任意角,终边相同的角
3、的同一三角函数的值相等 k是整数sin(2k+)=sin cos(2k+)=cos tan(2k+)=tan cot(2k+)=cot sec(2k+)=sec csc(2k+)=csc公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系sin(+)=sin cos(+)=cos tan(+)=tan cot(+)=cot sec(+)=-sec csc(+)=-csc公式三: 任意角与 -的三角函数值之间的关系sin()=sin cos()=cos tan()=tan cot()=cot sec(-)=sec csc(-)=-csc公式四: 利用公式二和公式三可以得到-与的三角函数值
4、之间的关系sin()=sin cos()=-cos tan()=tan cot()=cot sec(-)=-sec csc(-)=csc公式五: 利用公式四和三角函数的奇偶性可以得到-与的三角函数值之间的关系sin(-)=sin cos(-)=cos tan(-)=tan cot(-)=cot sec(-)=-sec csc(-)=csc公式六: 利用公式一和公式三可以得到2-与的三角函数值之间的关系sin(2)=sin cos(2)=cos tan(2)=tan cot(2)=cot sec(2-)=sec csc(2-)=-csc公式七: /2±及3/2±与的三角函数值之间的关系sin(/2+)=cos cos(/2+)=sin tan(/2+)=cot cot(/2+)=tan sec(/2+)=-csc csc(/2+)=sec sin(/2)=cos cos(/2)=sin tan(/2)=cot cot(/2)=tan sec(/2-)=csc csc(/2-)=sec sin(3/2+)=cos cos(3/2+)=sin tan(3/2+)=cot cot(3/2+)=tan sec(3/2+)=csc csc(3/2+)=-sec sin(3/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年含乳饮料项目合作计划书
- 盐城师范学院《数据分析与处理实验》2022-2023学年第一学期期末试卷
- 2024团队国内旅游合同电子版
- 2024《广告设计合同》
- 年处理一般固废14万吨技改项目环评报告表
- 红四煤矿4月份法律法规考试《煤矿重大事故隐患判定标准》练习试题
- 2024律师委托代理合同范本(正式)
- 2024版钢结构施工合同书
- 2024年医用高值耗材项目合作计划书
- 直播基地财务可行性分析
- GB/T 19630.2-2005有机产品第2部分:加工
- GB/T 14074-2017木材工业用胶粘剂及其树脂检验方法
- 小学三年级上册语文部编版课件口语交际:身边的“小事”(配套课件)
- 钢栈桥工程安全检查和验收
- FDS软件介绍及实例应用
- 无配重悬挑装置吊篮施工方案
- (完整版)计算方法练习题与答案
- 强基计划解读系列课件
- 2022-2023学年山东省济南市高一上学期期中考试英语试题 Word版含答案
- 《24点大挑战》教学-完整版课件
- 胸痛的鉴别诊断与危险分层课件
评论
0/150
提交评论