方差分析(ANOVA)_第1页
方差分析(ANOVA)_第2页
方差分析(ANOVA)_第3页
方差分析(ANOVA)_第4页
方差分析(ANOVA)_第5页
已阅读5页,还剩65页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、方差分析方差分析(ANOVAANOVA) 1Y1n 2Y2n3Y3n4Y4n例子:例子:某研究者在某单位工作人员中进行了体重指数(BMI)抽样调查,随机抽取不同年龄组男性受试者各16名,测量了被调查者的身高和体重值,由此按照BMI=体重/身高2公式计算了体重指数,请问,不同年龄组的体重指数有无差异。项目项目18岁岁30岁岁4560岁岁21.6527.1520.2820.6628.5822.8818.8223.9326.49样本量样本量161616平均值平均值22.0725.9425.49标准差标准差8.978.117.19一、方差分析的基本思想一、方差分析的基本思想5 5组间变异组间变异总变异

2、总变异组内变异组内变异思想来源:思想来源: 观察值总变异可以分解为组间变异和组内变异观察值总变异可以分解为组间变异和组内变异 6 61. 总变异总变异(Total variation): 全部测量值全部测量值Xij与总与总均数均数 间的差异间的差异 2. 组间变异组间变异(between group variation ): 各组的各组的均数均数 与总均数与总均数 间的差异间的差异3. 组内变异组内变异(within group variation ):每组的:每组的每个测量值每个测量值 与该组均数与该组均数 的差异的差异可用可用离均差平方和离均差平方和反映变异的大小反映变异的大小 XiXXi

3、jXiX1. 1. 总变异总变异: : 所有测量值之间总的变异所有测量值之间总的变异程度程度,SS总1N总kinjijTiXXSS112)( 2 2组间变异:组间变异:各组均数与总均数的离各组均数与总均数的离均差平方和,均差平方和, SS组间1a组间SSSS组间组间反映了各组均数反映了各组均数 的变异程度的变异程度组间变异随机误差组间变异随机误差+ +处理因素效应处理因素效应 21)(XXnSSikiiTRiXNa组内3 3组内变异:组内变异:用各组内各测量值用各组内各测量值Xij与与其所在组的均数差值的平方和来表示,其所在组的均数差值的平方和来表示,SSSS组内组内SSSS组内组内反映反映随

4、机误差随机误差的影响(个体差异和测量误差)。的影响(个体差异和测量误差)。211)(ikinjijeXXSSi 均方差,均方均方差,均方(mean square,MS) 1n2n3nVSVS1n2n3n1Y2Y3Y2Y3Y1Y1n2n3n1n2nVSVS3Y1Y2Y2Y3Y1Y组间均方与组内均方比值越小,样本越可能来组间均方与组内均方比值越小,样本越可能来源于同一个总体,比值越大,样本越可能不是源于同一个总体,比值越大,样本越可能不是来源于一个总体来源于一个总体 二、二、F F 值与值与F F分布分布,如果各组样本的总体均数相等(H0成立),即各处理组的样本来自相同总体,无处理因素的作用,则组

5、间变异同组内变异一样,只反映随机误差作用的大小。组间均方与组内均方的比值称为F统计量 F值接近于1,就没有理由拒绝H0;反之,F值越大,拒绝H0的理由越充分。数理统计的理论证明,当H0成立时,F统计量服从F分布。 MSFMS组间组内1组间2组内F F 分布曲线分布曲线10,10215, 1215, 52122121122/22/12121121)(222)(FFFf回忆回忆t t分布和分布和t t检验检验17171818F F 界值表界值表二、完全随机设计方差分析二、完全随机设计方差分析( (单因素方差分析单因素方差分析) )关于因素与水平关于因素与水平因素也称为处理因素(因素也称为处理因素(

6、factor)每一处理因素至少有两个水平每一处理因素至少有两个水平(level)(也称(也称“处理组处理组”)。)。完全随机设计:完全随机设计: 将实验对象随机分配到不同处理组的单因素设计方法。针对一个处理因素,通过比较该因素不同水平组均值,推断该处理因素不同水平组的均值是否存在统计学差异。例例 在评价某药物耐受性及安全性的I期临床试验中,对符合纳入标准的30名健康自愿者随机分为3组每组10名,各组注射剂量分别为0.5U、1U、2U,观察48小时部分凝血活酶时间(s)试问不同剂量的部分凝血活酶时间有无不同? 方差分析步骤方差分析步骤 : (1 1)提出检验假设,确定检验水准)提出检验假设,确定

7、检验水准 H0:1=2=3 H1:1,2,3不全相同 a=0.05 (2 2)计算检验统计量)计算检验统计量F F 值值 (3 3)确定)确定P P值,做出推断结论值,做出推断结论 F0.05(2,26) =2.52,FF0.05(2,26) ,P0.05,拒绝 H0。 三种不同剂量48小时部分凝血活酶时间 不全相同。例子:某研究者在某单位工作人员中进行了体重指数(BMI)抽样调查,随机抽取不同年龄组男性受试者各16名,测量了被调查者的身高和体重值,由此按照BMI=体重/身高2公式计算了体重指数,请问,不同年龄组的体重指数有无差异。项目项目18岁岁30岁岁4560岁岁21.6527.1520.

8、2820.6628.5822.8818.8223.9326.49样本量样本量161616平均值平均值22.0725.9425.49标准差标准差8.978.117.19方差分析适合于任何多组独立均衡可比的数据方差分析适合于任何多组独立均衡可比的数据基本步骤基本步骤(1 1)建立假设,确定检验水准)建立假设,确定检验水准H0:三个总体均数相等,即三组工作人员的体重指数总体均数相等H1:三个总体均数不等或不全相等a=0.05(2 2)计算检验统计量)计算检验统计量F F值值变异来源变异来源SSSS自由度(自由度(dfdf)MSMSF F组间143.406271.7038.87组内363.86458.

9、09总变异507.3647(3 3)确定)确定p p值,作出统计推断值,作出统计推断P2,45=3.20-3.218.87,本次F值处于F界值之外,说明组间均方组内均方比值属于小概率事件,因此拒绝H0,接受H1,三个总体均数不等或不全相等方差分析的关键条件方差分析的关键条件第一、各组服从正态分布!第一、各组服从正态分布!第二、各组符合方差齐性!第二、各组符合方差齐性!第三、独立性第三、独立性方差齐性检验方差齐性检验Bartlett检验法Levene F 检验最大方差与最小方差之比3,初步认为方差齐同。问题:问题: 不符合条件怎么办?不符合条件怎么办?第一招:数据转换第一招:数据转换 方差齐性转

10、换;正态性转换方差齐性转换;正态性转换第二招:特别分析方法第二招:特别分析方法 非参数检验非参数检验三、多个样本均数的两两比较三、多个样本均数的两两比较方差分析能说明什么问题?方差分析能说明什么问题?不拒绝不拒绝H H0 0,表示拒绝总体均数相等的证据不,表示拒绝总体均数相等的证据不足足 分析终止分析终止 拒绝拒绝H H0 0,接受,接受H H1 1, , 表示总体均数不全相等表示总体均数不全相等 哪两两均数之间相等?哪两哪两两均数之间相等?哪两两均数之间不等?两均数之间不等? 需要进一步作多重比较需要进一步作多重比较能否用T检验呢当有k个均数需作两两比较时,比较的次数共有c= k!/(2!(

11、k-2)!)=k(k-1)/2设每次检验所用类错误的概率水准为,累积类错误的概率为,则在对同一实验资料进行c次检验时,在样本彼此独立的条件下,根据概率乘法原理,其累积类错误概率与c有下列关系: 1(1)c 例如,设0.05,c=3(即k=3),其累积类错误的概率为1(1-0.05)3 =1-(0.95)3 = 0.143多重比较的方法:多重比较的方法:SNK检验(q 检验):探索性研究,进行两两比较。LSD-t 检验:证实性检验,可认为LSD法是最灵敏的Turkey 检验方法,探索性研究,要求样本量相同。Duncan 检验方法,探索性研究Dunnet 检验方法,证实性检验,常用于多个试验组与一

12、个对照组间的比较。 例例1 在肾缺血再灌注过程的研究中,将在肾缺血再灌注过程的研究中,将36只雄性大鼠随机等只雄性大鼠随机等分成三组,分别为正常对照组、肾缺血分成三组,分别为正常对照组、肾缺血60分组和肾缺血分组和肾缺血60分再灌注组,测得各个体的分再灌注组,测得各个体的NO数据见数据文件数据见数据文件no.sav,试,试问各组的问各组的NO平均水平是否相同?平均水平是否相同?单因素方差分析单因素方差分析分析:分析:对于单因素方差分析,其资料在对于单因素方差分析,其资料在SPSS中的数据结构应当由中的数据结构应当由两列数据构成,其中一列是观察指标的变量值,另一列是用两列数据构成,其中一列是观察

13、指标的变量值,另一列是用以表示分组变量。实际上,几乎所有的统计分析软件,包括以表示分组变量。实际上,几乎所有的统计分析软件,包括SAS,STATA等,都要求方差分析采用这种数据输入形式,等,都要求方差分析采用这种数据输入形式,这一点也暗示了方差分析与线性模型间千丝万缕的联系。这一点也暗示了方差分析与线性模型间千丝万缕的联系。单因素方差分析单因素方差分析 预分析(重要):检验其应用条件预分析(重要):检验其应用条件单因素方差分析单因素方差分析选择选择data 中的中的split file,出现如下对话框:,出现如下对话框:单因素方差分析单因素方差分析单因素方差分析单因素方差分析单因素方差分析单因

14、素方差分析v 这里仅取其中一组结果,表明该资料符合这里仅取其中一组结果,表明该资料符合分组正态性的条件。分组正态性的条件。单因素方差分析单因素方差分析注意分组检验正态性后,要先回到注意分组检验正态性后,要先回到data菜单下的菜单下的split file ,如下操作取消拆分后才能进行后续的方差分析:如下操作取消拆分后才能进行后续的方差分析:单因素方差分析单因素方差分析单因素方差分析单因素方差分析选入分组变量选入分组变量选入因变量选入因变量给出各组间样本给出各组间样本均数的折线图均数的折线图指定进行方差指定进行方差齐性检验齐性检验单因素方差分析单因素方差分析结果分析结果分析单因素方差分析单因素方

15、差分析(1) 方差齐性检验方差齐性检验v Levene方法检验统计量为方法检验统计量为3.216,其,其P值为值为0.053,可,可认为样本所来自的总体满足方差齐性的要求。认为样本所来自的总体满足方差齐性的要求。Test of Homogeneity of Variancesno3.216233.053Levene Statisticdf1df2Sig.单因素方差分析单因素方差分析结果分析结果分析(2) 方差分析表方差分析表v 第第1列为变异来源,第列为变异来源,第2、3、4列分别为离均差平方和、自列分别为离均差平方和、自由度、均方,检验统计量由度、均方,检验统计量F值为值为5.564,P0.

16、008,组间均数,组间均数差别统计学意义,可认为各组的差别统计学意义,可认为各组的NO不同。不同。ANOVAno46925.950223462.9755.564.008139157.6334216.898186083.635Between GroupsWithin GroupsTotalSum ofSquaresdfMean SquareFSig.变变异异来来源源单因素方差分析单因素方差分析结果分析结果分析(3) 各组样本均数折线图各组样本均数折线图Means plots 选项给出,更直观。选项给出,更直观。注意注意:当分组变量体现出顺序的趋势时,绘制这种折线图可以提示:当分组变量体现出顺序的

17、趋势时,绘制这种折线图可以提示我们选择正确的趋势分析模型。我们选择正确的趋势分析模型。通过以上分析得到了拒绝通过以上分析得到了拒绝H H0 0的结论,但实际上单因素方差分的结论,但实际上单因素方差分析并不这样简单。在解决实际问题时,往往仍需要回答多个析并不这样简单。在解决实际问题时,往往仍需要回答多个均数间到底是哪些存在差异。虽然结论提示不同组别个体的均数间到底是哪些存在差异。虽然结论提示不同组别个体的NONO量不同,但研究者并不知道到底是三者之间均有差别,还量不同,但研究者并不知道到底是三者之间均有差别,还是某一组与其他两组有差别。这就应当通过两两比较(多重是某一组与其他两组有差别。这就应当

18、通过两两比较(多重比较)进行考察。比较)进行考察。均数两两比较方法均数两两比较方法直接校正检验水准直接校正检验水准 (相对粗糙)(相对粗糙)专用的两两比较方法:专用的两两比较方法:计划好的多重比较(计划好的多重比较(Planned Comparisons)非计划的多重比较(非计划的多重比较(PostHoc Comparisons)均数两两比较方法均数两两比较方法Contrasts按钮按钮Post Hoc按钮按钮点击单因素方差分析主对话框中的点击单因素方差分析主对话框中的Post Hoc按钮,总共按钮,总共有有14种两两比较的方法,如下:种两两比较的方法,如下:均数两两比较方法均数两两比较方法L

19、SD法:法:最灵敏最灵敏,会犯假阳性错误;,会犯假阳性错误;Sidak法:比法:比LSD法保守;法保守;Bonferroni法:比法:比Sidak法更为保守一些;法更为保守一些;Scheffe法:多用于进行比较的两组间样本含量不等时;法:多用于进行比较的两组间样本含量不等时;Dunnet法:常用于多个试验组与一个对照组的比较;法:常用于多个试验组与一个对照组的比较;S-N-K法:寻找同质亚组的方法;法:寻找同质亚组的方法;Turkey法:最迟钝,要求各组样本含量相同;法:最迟钝,要求各组样本含量相同;Duncan法:与法:与Sidak法类似。法类似。均数两两比较方法均数两两比较方法仍以例仍以例

20、1为例,为例,LSD法的输出格式:法的输出格式:均数两两比较方法均数两两比较方法结果分析结果分析仍以例仍以例1为例,为例,SNK法的输出格式:法的输出格式:结果分析结果分析均数两两比较方法均数两两比较方法v 该方法的目的是寻找同质子集,故各组在表格的纵向上,均该方法的目的是寻找同质子集,故各组在表格的纵向上,均数按大小排序,然后根据多重比较的结果将所有的组分为若干数按大小排序,然后根据多重比较的结果将所有的组分为若干个子集,子集间有差别,子集内均数无差别。个子集,子集间有差别,子集内均数无差别。 当各组样本含量不同,选择当各组样本含量不同,选择S Scheffecheffe法,得结果:法,得结

21、果:均数两两比较方法均数两两比较方法结果分析结果分析Multiple ComparisonsDependent Variable: noScheffe13.6125026.51068.877-54.338981.563982.48167*26.51068.01414.5303150.4330-13.6125026.51068.877-81.563954.338968.86917*26.51068.046.9178136.8205-82.48167*26.51068.014-150.4330-14.5303-68.86917*26.51068.046-136.8205-.9178(J) grou

22、p231312(I) group123MeanDifference(I-J)Std. ErrorSig.Lower BoundUpper Bound95% Confidence IntervalThe mean difference is significant at the .05 level.*. 假设在调查的设计阶段,就计划好了第二组和第一组,以及第三假设在调查的设计阶段,就计划好了第二组和第一组,以及第三组和第一组的比较,可以使用主对话框中的组和第一组的比较,可以使用主对话框中的contrast contrast 按钮按钮实现。实现。v 在在coefficients后面的框中输入后面的

23、框中输入1,-1,0,每次输入后点击,每次输入后点击add,就,就可以比较第一组和第二组的可以比较第一组和第二组的NO;再点击;再点击next按钮,继续输入下一个组按钮,继续输入下一个组合,即合,即0,-1,1。均数两两比较方法均数两两比较方法均数两两比较方法均数两两比较方法结果分析结果分析可见,第一个组合无统计学意义,而第二个组合有显著性差异。可见,第一个组合无统计学意义,而第二个组合有显著性差异。Contrast Coefficients1-1010-1Contrast12123groupContrast Tests13.6125 26.51068.51333.61182.4817 26.

24、510683.11133.00413.6125 22.16579.61421.981.54582.4817 28.306862.91418.900.009Contrast1212Assume equal variancesDoes not assume equalvariancesnoValue ofContrast Std. ErrortdfSig. (2-tailed)四、多因素方差分析四、多因素方差分析多因素方差分析多因素方差分析一个因素(水平间独立)单因素方差分析两个因素(水平间独立或相关)多(两)因素方差分析一个个体多个测量值重复测量资料的方差分析目的:用这类资料的样本信息来推断各处理组间多个总体均数的差别有无统计学意义。(一)随机区组方差分析(水平间独立两因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论