版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上中考总复习:二次函数知识讲解(基础)责编:常春芳【考纲要求】1二次函数的概念常为中档题主要考查点的坐标、确定解析式、自变量的取值范围等;2二次函数的解析式、开口方向、对称轴、顶点坐标等是中考命题的热点;3抛物线的性质、平移、最值等在选择题、填空题中都出现过,覆盖面较广,而且这些内容的综合题一般较难,在解答题中出现【知识网络】 【考点梳理】考点一、二次函数的定义 一般地,如果(a、b、c是常数,a0),那么y叫做x的二次函数要点诠释: 二次函数(a0)的结构特征是:(1)等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2(2)二次项系数a0考点二、二次函数的图
2、象及性质1.二次函数(a0)的图象是一条抛物线,顶点为2.当a0时,抛物线的开口向上;当a0时,抛物线的开口向下3.|a|的大小决定抛物线的开口大小|a|越大,抛物线的开口越小,|a|越小,抛物线的开口越大 c的大小决定抛物线与y轴的交点位置c0时,抛物线过原点;c0时,抛物线与y轴交于正半轴;c0时,抛物线与y轴交于负半轴 ab的符号决定抛物线的对称轴的位置当ab0时,对称轴为y轴;当ab0时,对称轴在y轴左侧;当ab0时,对称轴在y轴的右侧4.抛物线的图象,可以由的图象移动而得到将向上移动k个单位得:将向左移动h个单位得:将先向上移动k(k0)个单位,再向右移动h(h0)个单位,即得函数的
3、图象要点诠释:求抛物线(a0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用考点三、二次函数的解析式1.一般式:(a0) 若已知条件是图象上的三个点,则设所求二次函数为,将已知条件代入,求出a、b、c的值2.交点式(双根式): 若已知二次函数图象与x轴的两个交点的坐标为(x1,0),(x2,0),设所求二次函数为,将第三点(m,n)的坐标(其中m、n为已知数)或其他已知条件代入,求出待定系数,最后将解析式化为一般形式3.顶点式: 若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为,将已知条件代入,求出待
4、定系数,最后将解析式化为一般形式4.对称点式:若已知二次函数图象上两对称点(x1,m),(x2,m),则可设所求二次函数为,将已知条件代入,求得待定系数,最后将解析式化为一般形式要点诠释: 已知图象上三点或三对、的值,通常选择一般式.已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数).已知图象与轴的交点坐标、,通常选用交点式:(a0).(由此得根与系数的关系:).考点四、二次函数(a0) 的图象的位置与系数a、b、c的关系1.开口方向:a0时,开口向上,否则开口向下2.对称轴:时,对称轴在y轴的右侧;当时,对称轴在y轴的左侧3.与x轴交点:时,有两个交点;时,有一个交
5、点;时,没有交点要点诠释: 当x1时,函数ya+b+c; 当x-1时,函数ya-b+c; 当a+b+c0时,x1与函数图象的交点在x轴上方,否则在下方; 当a-b+c0时,x-1与函数图象的交点在x轴的上方,否则在下方考点五、二次函数的最值1.当a0时,抛物线有最低点,函数有最小值,当时,2.当a0时,抛物线有最高点,函数有最大值,当时,要点诠释: 在求应用问题的最值时,除求二次函数的最值,还应考虑实际问题的自变量的取值范围【典型例题】类型一、应用二次函数的定义求值1二次函数y=x2-2(k+1)x+k+3有最小值-4,且图象的对称轴在y轴的右侧,则k的值是 2【思路点拨】因为图象的对称轴在y
6、轴的右侧,所以对称轴x=k+10,即k-1;又因为二次函数y=x2-2(k+1)x+k+3有最小值-4,所以y最小值= =-4,可以求出k的值【答案与解析】解:图象的对称轴在y轴的右侧,对称轴x=k+10,解得k-1,二次函数y=x2-2(k+1)x+k+3有最小值-4,y最小值= =k+3-(k+1)2=-k2-k+2=-4,整理得k2+k-6=0,解得k=2或k=-3,k=-3-1,不合题意舍去,k=2【总结升华】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法举一反三:【变式】已知是二次函数,求k的值【答案】是二次函数,则由得,即,得,显然,当k
7、-3时,原函数为y0,不是二次函数 k2即为所求类型二、二次函数的图象及性质的应用2把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ) A B C D【思路点拨】抛物线的平移问题,实质上是顶点的平移,原抛物线y=-x2顶点坐标为(0,0),向左平移1个单位,然后向上平移3个单位后,顶点坐标为(-1,3),根据抛物线的顶点式可求平移后抛物线的解析式【答案】 D;【解析】根据抛物线的平移规律可知:向左平移1个单位可变成,再向上平移3个单位后可变成【总结升华】(1)图象向左或向右平移|h|个单位,可得的图象(h0时向左,h0时向右) (2)的图象向上或向下平移|k|个单位
8、,可得的图象(k0时向上,k0时向下)举一反三:【变式】将二次函数的图象向右平移1个单位长度,再向上平移2个单位长度后,所得图象的函数表达式是( )A B C D【答案】按照平移规律“上加下减,左加右减”得故选A.类型三、求二次函数的解析式3已知二次函数的图象经过点(1,0),(-5,0),顶点纵坐标为,求这个二次函数的解析式 【思路点拨】将点(1,0),(-5,0)代入二次函数y=ax2+bx+c,再由 ,从而求得a,b,c的值,即得这个二次函数的解析式【答案与解析】解法一:由题意得 解得所以二次函数的解析式为解法二:由题意得 把代入,得,解得所以二次函数的解析式为,即 解法三:因为二次函数
9、的图象与x轴的两交点为(1,0),(-5,0),由其对称性知,对称轴是直线所以,抛物线的顶点是可设函数解析式为即【总结升华】根据题目的条件,有多种方法求二次函数的解析式举一反三:【高清课程名称:二次函数与中考 高清ID号:关联的位置名称(播放点名称):经典例题1】【变式】已知:抛物线经过点(1)求的值;(2)若,求这条抛物线的顶点坐标;(3)若,过点作直线轴,交轴于点,交抛物线于另一点,且,求这条抛物线所对应的二次函数关系式(提示:请画示意图思考)【答案】解:(1)依题意得:, (2)当时, 抛物线的顶点坐标是 yxOBPA(3)解法1:当时,抛物线对称轴,对称轴在点的左侧因为抛物线是轴对称图
10、形,且 又,抛物线所对应的二次函数关系式 解法2:当时,对称轴在点的左侧因为抛物线是轴对称图形,且 又,解得:这条抛物线对应的二次函数关系式是 解法3:, 轴, 即:解得:,即 由,这条抛物线对应的二次函数关系式. 类型四、二次函数图象的位置与a、b、c的关系4(2015包头)如图,已知二次函数y=ax2+bx+c(a0)的图象与x轴交于点A(1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:当x3时,y0;3a+b0;1a;4acb28a;其中正确的结论是()ABCD【思路点拨】先由抛物线的对称性求得抛物线与x轴令一个交点的坐标为(3,0),从
11、而可知当x3时,y0;由抛物线开口向下可知a0,然后根据x=1,可知:2a+b=0,从而可知3a+b=0+a=a0;设抛物线的解析式为y=a(x+1)(x3),则y=ax22ax3a,令x=0得:y=3a由抛物线与y轴的交点B在(0,2)和(0,3)之间,可知23a3由4acb28a得c20与题意不符【答案】B;【答案与解析】解:由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,0),当x3时,y0,故正确;抛物线开口向下,故a0,x=1,2a+b=03a+b=0+a=a0,故正确;设抛物线的解析式为y=a(x+1)(x3),则y=ax22ax3a,令x=0得:y=3a抛物线与y轴的交
12、点B在(0,2)和(0,3)之间,23a3解得:1a,故正确;抛物线y轴的交点B在(0,2)和(0,3)之间,2c3,由4acb28a得:4ac8ab2,a0,c2c20c2,与2c3矛盾,故错误故选:B【总结升华】本题主要考查的是二次函数的图象和性质,掌握抛物线的对称轴、开口方向与系数a、b、c之间的关系是解题的关键举一反三:【变式】如图所示是二次函数图象的一部分,图象经过点A(-3,0),对称轴为给出四个结论:;其中正确结论是( ) A B C D【答案】本例是利用二次函数图象的位置与a、b、c的和、差、积的符号问题,其中利用直线, 交抛物线的位置来判断,的符号问题应注意理解和掌握由图象开
13、口向下,可知a0,图象与x轴有两个交点,所以, 确对称轴为,所以,又由a0,b2a,可得5ab,正确故选B.类型五、求二次函数的最值5某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)设每件商品的售价上涨x元(x为正整数),每个月的销售利润为)y元(1)求y与x的函数关系式并直接写出自变量x的取值范围 (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于2
14、200元?【思路点拨】(1)每件商品的售价每上涨1元,则每个月少卖10件,当每件商品的售价上涨x元时,每个月可卖出(210-10x)件,每件商品的利润为x+50-40=10+x;(2)每个月的利润为卖出的商品数和每件商品的乘积,即(210-10x)(10+x),当每个月的利润恰为2200元时得到方程(210-10x)(10+x)=2200求此方程中x的值【答案与解析】(1)y(210-l0x)(50+x-40)-10x2+110x+2100(0x15且x为整数) (2)y-10(x-5.5)2+2402.5 a-100, 当x5.5时,y有最大值2402.5 00),同时将直线:沿轴正方向平移个单位.平移后的直线为,移动后、的对应点分别为、.当为何值时,在直线上存在点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林师范大学《美术概论》2021-2022学年第一学期期末试卷
- 吉林师范大学《环境影响评价技术导则》2021-2022学年第一学期期末试卷
- 阳光房压型铝合金板施工和保温方案
- 吉林师范大学《地图学》2021-2022学年第一学期期末试卷
- 吉林大学《英汉翻译基础》2021-2022学年第一学期期末试卷
- 吉林大学《外科总论E》2021-2022学年第一学期期末试卷
- 幼儿园食品安全责任管理制度
- 2024工商注册房屋租赁合同
- 商业综合体绿化景观设计施工方案
- 吉林大学《软件工程专业导论》2021-2022学年期末试卷
- 广东省深圳市龙华区2023-2024学年五年级上学期期中数学试卷
- 中西式点心新手制作教程
- (完整版)高考作文稿纸(标准)
- 小班安全《特殊的电话号码》
- 争做新时代好少年主题班会课件(共29张PPT)
- 化工总经理岗位职责
- 饼干喷油机安全操作保养规程
- 国电职称考试水能动力工程考试题库2023版
- 水稻栽培管理技术培训(精简)课件
- 第12讲 隐零点问题处理方法
- 外科护理技术-说课-课件
评论
0/150
提交评论