版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、22.2 二次函数与一元二次方程二次函数与一元二次方程 (第(第1课时)课时)倍速课时学练问题问题: 如图以如图以40m/s的速度将小球沿与地面成的速度将小球沿与地面成30角的方角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空向击出时,球的飞行路线将是一条抛物线,如果不考虑空气阻力,球的飞行高度气阻力,球的飞行高度h(单位:(单位:m)与飞行时间)与飞行时间t(单位:(单位:s)之间具有关系)之间具有关系h = 20t5t 2考虑以下问题:考虑以下问题:(1)球的飞行高度能否达到)球的飞行高度能否达到15m?如能,需要多少飞行时间?如能,需要多少飞行时间?(2)球的飞行高度能否达到)球
2、的飞行高度能否达到20m?如能,需要多少飞行时间?如能,需要多少飞行时间?(3)球的飞行高度能否达到)球的飞行高度能否达到20.5m?为什么?为什么?(4)球从飞出到落地需要用多少时间?)球从飞出到落地需要用多少时间?倍速课时学练 所以可以将问题中所以可以将问题中h的值代入函数解析式,得到关于的值代入函数解析式,得到关于t的一元二次方的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值;否则,说明球的飞行高度不能达到问题中的值;否则,说明球的飞行高度不能达到问题中h的值的值解:(解:(1)解方程)解方程152
3、0t5t 2t 24t3=0t1=1,t2=3当球飞行当球飞行1s和和3s时,它的高度为时,它的高度为15m分析:由于球的飞行高度分析:由于球的飞行高度h与飞行时间与飞行时间t的关系是二次函的关系是二次函数数h=20t5t 2t1=1st2=3s15m15m倍速课时学练(2)解方程)解方程2020t5t 2t 24t4=0t1=t2=2当球飞行当球飞行2s时,它的高度为时,它的高度为20mt1=2s20m倍速课时学练(3)解方程)解方程20.520t5t 2t 24t4.1=0因为(因为(4)244.10,所以方程无解,所以方程无解球的飞行高度达不到球的飞行高度达不到20.5m20m倍速课时学
4、练(4)解方程)解方程020t5t2t24t=0t1=0,t2=4当球飞行当球飞行0s和和4s时,它的高度为时,它的高度为0m,即,即0s时球从地面发出,时球从地面发出,4s时球时球落回地面落回地面0倍速课时学练 从上面可以看出,二次函数与一元二次方程关系密切从上面可以看出,二次函数与一元二次方程关系密切一般地,我们可以利用二次函数一般地,我们可以利用二次函数y=ax2+bx+c 深入讨论一元二次方程深入讨论一元二次方程ax2+bx+c=0例如,已知二次函数例如,已知二次函数y = x24x的值为的值为3,求自变量,求自变量x的值,的值,可以解一元二次方程可以解一元二次方程x24x=3(即(即
5、x24x+3=0)反过来,解方程反过来,解方程x24x+3=0 又可又可以看作已知二次函数以看作已知二次函数 y = x24x+3 的值为的值为0,求自变量,求自变量x的值的值倍速课时学练下列二次函数的图象与下列二次函数的图象与x轴有公共点吗?如轴有公共点吗?如果有,公共点的横坐标是多少?当果有,公共点的横坐标是多少?当x取公共取公共点的横坐标时,函数的值是多少?由此,点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?你能得出相应的一元二次方程的根吗?(1)y = x2x2(2)y = x26x9(3)y = x2x1(1)抛物线)抛物线y = x2x2与与x轴有两个公共点
6、,它们的横坐标是轴有两个公共点,它们的横坐标是2,1.当当x取公共点的横坐标时,函数的值是取公共点的横坐标时,函数的值是0.由此得出方程由此得出方程x2x20的根是的根是2,1.(2)抛物线)抛物线y = x26x9与与x轴有一个公共点,这点的横坐标是轴有一个公共点,这点的横坐标是3. 当当x = 3 时,函数的值是时,函数的值是0由此得出方程由此得出方程 x26x90有两个相等的实数根有两个相等的实数根3.(3)抛物线)抛物线y = x2x1与与x轴没有公共点,由此可知,方程轴没有公共点,由此可知,方程x2x10没有实数根没有实数根1y = x26x9y = x2x1y = x2x2倍速课时学练(2)二次函数的图象与)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点,这对应着一元二次方程根的三种情况:没有实数根,点,有两个公共点,这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根有两个相等的实数根,有两个不等的实数根一般地,从二次函数一般地,从二次函数y=ax2+bx+c 的图象可知的图象可知(1)如果抛物线)如果抛物线y=ax2+b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人非物质文化遗产抵押贷款合同范本
- 二零二五年金融数据分析不可撤销居间合同3篇
- 个人租车自驾合同模板
- 2025年度绿色建筑节能改造个人施工合同4篇
- 2025年湖南株洲高科集团有限公司招聘笔试参考题库含答案解析
- 2025年福建沙县交通建设投资公司招聘笔试参考题库含答案解析
- 2025年外研版选修4化学上册阶段测试试卷
- 2025年沪教版九年级地理上册月考试卷含答案
- 2024年度青海省公共营养师之二级营养师模拟考核试卷含答案
- 2024年度黑龙江省公共营养师之三级营养师提升训练试卷A卷附答案
- 吉林省吉林市普通中学2024-2025学年高三上学期二模试题 生物 含答案
- 《电影之创战纪》课件
- 社区医疗抗菌药物分级管理方案
- 开题报告-铸牢中华民族共同体意识的学校教育研究
- 《医院标识牌规划设计方案》
- 公司2025年会暨员工团队颁奖盛典携手同行共创未来模板
- 新沪科版八年级物理第三章光的世界各个章节测试试题(含答案)
- 夜市运营投标方案(技术方案)
- 电接点 水位计工作原理及故障处理
- 国家职业大典
- 2024版房产代持协议书样本
评论
0/150
提交评论