




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上2019届湖南省长郡中学高三下学期第一次模拟考试数学(理)试题一、单选题1已知集合A=x|x>a,B=x|x24x+30,若AB=B,则实数a的取值范围是( )Aa>3 Ba3 Ca1 Da<1【答案】D【解析】分析:先化简集合B,再根据AB=B求出实数a的取值范围.详解:由题得B=x|1x3.因为AB=B,所以BA,所以a<1.故答案为:D点睛:(1)本题主要考查集合的交集和集合的关系,意在考查集合的基础知识的掌握能力.(2)本题有一个易错点,最后的答案容易加等号即a1,到底取等还是不取等,可以直接把a=1代入已知检验,A=x|x>1,
2、B=x|1x3,不满足AB=B,AB=(1,3)B.2复数5i2的共轭复数是( )A2+i B2+i C2i D2i【答案】C【解析】本题考查共轭复数的概念,先把复数5i2的分母实数化,根据共轭复数的概念易得答案C。3如图是2002年8月中国成功主办的国际数学家大会的会标,是我国古代数学家赵爽为证明勾股定理而绘制的,在我国最早的数学著作周髀算经中有详细的记载.若图中大正方形ABCD的边长为5,小正方形的边长为2.现作出小正方形的内切圆,向大正方形所在区域模拟随机投掷n个点.有m个点落在中间的圆内,由此可估计的近似值为( )A25m4nB4mnC4m25nD25mn【答案】D【解析】分析:利用几
3、何概型概率公式可得25mn,25mn.详解:小正方形边长为2,所以圆半径为1,圆面积为,又大正方形的棱长为5,所以正方形面积为25,由几何概型概率公式可得25mn,25mn,故选D.点睛:本题主要考查几何概型概率公式以及模拟实验的基本应用,属于简单题,求不规则图形的面积的主要方法就是利用模拟实验及几何概型概率公式,列出符合条件的面积与总面积之间的方程求解.4已知ai,biR且ai,bi都不为0(i=1,2),则“a1b1=a2b2”是“关于x的不等式a1xb1>0与a2xb2>0同解”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】B【解析】充分性:
4、举反例a1=b1=1,a2=b2=-1,可判断不成立;必要性:不等式同解可得方程同解,从而证明必要性成立.【详解】解:若a1b1=a2b2,取a1=b1=1,a2=b2=-1,则解a1x-b1>0得x>1,解a2x-b2>0得x<1,所以关于x的不等式a1x-b1>0与a2x-b2>0不同解;若关于x的不等式a1x-b1>0与a2x-b2>0同解,则方程a1x-b1=0与a2x-b2=0必同解,又ai,bi都不为0(i=1,2),所以a1b1=a2b2所以“a1b1=a2b2”是“关于x的不等式a1x-b1>0与a2x-b2>0同解”
5、的必要不充分条件故选:B.【点睛】本题考查了充分必要条件的判断,判断一个命题为假只需举一个反例即可.5某三棱锥的三视图如图所示,该三棱锥的表面积是( )A60+125B56+125C30+65D28+65【答案】C【解析】通过三视图复原的几何体的形状,利用三视图的数据求出各棱长,从而求出各面的面积,相加即可.【详解】解:三视图复原的几何体是底面为直角边长为4和5的直角三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图所以S底=12×4×5=10,S后=12×4×5=10,S右=12×4×5=10左边侧面为等腰三角形,底边为
6、25,高为(41)2-(5)2=6所以S左=12×25×6=65三棱锥的表面积S表=S底+S后+S右+S左=30+65故选B【点睛】本题考查了三视图与几何体的关系,空间几何体表面积的求法,考查了空间想象能力与计算能力.6阅读如图所示的程序框图,若输入的k=10,则该算法的功能是( )A计算数列2n-1的前10项和B计算数列2n-1的前9项和C计算数列2n-1的前10项和D计算数列2n-1的前9项和【答案】A【解析】从赋值开始,逐步分析写出程序运行的每一步,便可得到程序框图表示的算法的功能.【详解】解:开始赋值:S=0,i=1;执行S=1+2×0=1,i=1+1=2
7、;判断i>10不成立,执行S=1+2×1=1+2,i=2+1=3;判断i>10不成立,执行S=1+2×1+2=1+2+22,i=3+1=4;判断i>10不成立,执行S=1+2+22+29,i=10+1=11;判断i>10成立,输出S=1+2+22+29.算法结束所以该算法的功能是计算数列2n1的前10项和故选:A.【点睛】本题考查了程序框图中的循环结构,循环次数较多时,一般写出前几次循环找出规律.7如图是函数图像的一部分,对不同的,若,有,则正确的是( )A在上是减函数B在上是减函数C在上是增函数D在上是增函数【答案】C【解析】试题分析:根据题意可知
8、,从而有,结合题中条件,可知,结合的范围,求得,所以,结合函数的性质,可知C是正确的,故选C【考点】根据图像求函数解析式,正弦函数的性质8如图所示,直线l为双曲线C:x2a2y2b2=1(a>0,b>0)的一条渐近线,F1,F2是双曲线C的左、右焦点,F1关于直线l的对称点为F1,且F1是以F2为圆心,以半焦距c为半径的圆上的一点,则双曲线C的离心率为( )A2 B3 C2 D3【答案】C【解析】设焦点F1c,0关于渐近线l:y=bax的对称点为F1'm,n,则n2=bamc2nm+c=abm=b2a2cn=2abc,又点F1'm,n在圆xc2+y2=c2上,b2a
9、2cc2+2abc2=c2 4a2=c2e2=4,e=2,故选C.9已知定义在R上的偶函数f(x)=exkcosx(其中e为自然对数的底数),记a=f(0.32),b=f(20.3),c=f(k+log32),则a,b,c的大小关系是( )Aa<c<bBc<a<bCb<c<aDb<a<c【答案】A【解析】先由偶函数求出k=0,然后分析出函数在0,上单调递增,判断出以0.32< k+log32<20.3,且都属于0,,然后可比较大小.【详解】解:由定义在R上的偶函数f(x)=ex-k-cosx,可得f(-x)=f(x)即e-x-k-co
10、s-x=ex-k-cosx,解得k=0所以f(x)=ex-cosx当x0,时,ex=ex单调递增,cosx单调递减,所以f(x)=ex-cosx在0,上单调递增因为0.32=0.09,1<20.3<2,0.5<k+log32=log32<1所以0.32< k+log32<20.3,且都属于0,所以f0.32<c=fk+log32< f(20.3),即a<c<b故选:A.【点睛】本题考查了函数单调性与奇偶性的综合运用,考查了学生分析解决问题的能力,属于中档题.10已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,
11、第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i行,第j列的数记为ai,j,比如a3,2=9,a4,2=15,a5,4=23,若ai,j=2019,则i+j=( )A72B71C66D65【答案】B【解析】先分析出奇数2019为第1010个奇数,按照蛇形排列,第1行到第i行末共有1+2+i=i1+i2个奇数,试值可以分析出第1010个奇数位于第45行,从右到左第20列,从而得出答案.【详解】解:奇数2019为第1010个奇数,按照蛇形排列,第1行到第i行末共有1+2+i=i1+i2个奇数,则第1行到第44行末共有990个奇数,第1行到第45行末共有1035
12、个奇数,则2019位于第45行;而第45行是从右到左依次递增,且共有45个奇数;故2019位于第45行,从右到左第20列,则i=45,j=26i+j=71故选B.【点睛】本题考查了等差数列的前n项和,数与式中的归纳推理,属于中等题.11已知函数ux=2e1xm,x=1nx+m1nx若存在m,使得关于x的方程2auxx=x有解,其中e为自然对数的底数则实数a的取值范围是( )A,012e,+ B,0C0,12e D,012e,+【答案】D【解析】分析:由题得2e1+mxln1+mx=12a,令t=1+mx,gt=2etlnt,利用导数性质能求出实数a的取值范围详解:由2auxvx=x,得x+a2
13、x+2m4exlnx+mlnx=0,得1+a21+mx4eln1+mx=0,即2e1+mxln1+mx=12a,令t=1+mx,gt=2etlnt,则gt=lnt+2et1=2et1+lnt,显然t=e是函数gt的唯一零点,易得gtmax=ge=e,12ae,即a,012e,+.故选D.点睛:本题考查实数的取值范围的求法解题时要认真审题,注意导数性质、构造法的合理运用,属中档题,二、填空题12已知F为抛物线C:y2=4x的焦点,E为其准线与x轴的交点,过F的直线交抛物线C于A,B两点,M为线段AB的中点,且ME=11,则AB=( )A6B33C8D9【答案】A【解析】设直线l:y=kx-1,联
14、立抛物线方程得韦达定理,求出点M坐标,由ME=11列方程解出k,然后可求出AB.【详解】解:根据题意可知直线的斜率是存在的,抛物线的焦点坐标是F1,0,设直线l:y=kx-1,将直线与抛物线方程联立y2=4xy=kx-1,化简得k2x2-2k2+4x+k2=0,得x1+x2=2k2+4k2,所以Mk2+2k2,2k,又E-1,0,根据ME=11,得k2+2k2+12+4k2=11,解得k2=2,所以AB=AF+BF=x1+x2+p=2+4k2+2=6,故选A.【点睛】本题考查了直线与抛物线的位置关系,抛物线焦点弦的性质,属于中档题.13已知向量a=1,3,向量a,c的夹角是3,ac=2,则c等
15、于_.【答案】2【解析】试题分析:由题意,得|a|=2,向量a,c的夹角,则由ac=2,得2|c|cos3=2,则|c|=2;故填2【考点】1.平面向量的数量积;2.平面向量的模14设x,y满足约束条件x0,y0,xy1,x+y3,,则z=x2y的最小值为_.【答案】3【解析】先画出约束条件所代表的平面区域,再画出目标函数并平移目标函数确定最优解的位置,求出最优解代入目标函数求出最值即可.【详解】解:先画出约束条件x0,y0,xy1,x+y3,所代表的平面区域,如图中阴影然后画出目标函数如图中过原点虚线所示平移目标函数,在点A处取得最小值由xy=1x+y=3,解得A1,2所以目标函数z=x2y
16、最小值为12×2=3故答案为:3.【点睛】本题考查了简单线性规划问题,平移目标函数时由目标函数z=x2y中y前系数小于0,故向上移越移越小.15若的展开式中各项的系数之和为81,且常数项为,则直线与曲线所围成的封闭区域面积为 【答案】【解析】试题分析:的展开式中各项的系数之和为81,的展开式的通项公式为:令,解得展开式中常数项为直线与曲线围成的封闭区域面积为:故答案为:【考点】二项式定理,定积分16已知点P,A,B,C均在表面积为81的球面上,其中PA平面ABC,BAC=30,AC=3AB,则三棱锥PABC的体积的最大值为_【答案】818【解析】分析:先求出球的半径,再求出三棱锥P-
17、ABC的体积的表达式,最后求函数的最大值.详解:设球的半径为R,所以81=4R2,R=92.设AB=x,则AC=3x,由余弦定理得BC2=3x2+x223x×x×32=x2,BC=x.设底面ABC的外接圆的半径为r,则2r=xsin300,x=r.所以PA=2814x2.所以三棱锥P-ABC的体积V=13123xx122814x2=36x2814x2=36(814x2)x22x22436(8143)3×4=818.当且仅当x=326时取等.故答案为:818点睛:(1)本题主要考查球的体积和几何体的外接球问题,考查基本不等式,意在考查学生对这些基础知识的掌握能力和空
18、间想象能力.(2)三元基本不等式:abc(a+b+c3)3,当且仅当a=b=c>0时取等.(3)函数的思想是高中数学的重要思想,一般是先求出函数的表达式,再求函数的定义域,再求函数的最值.三、解答题17在中,三边所对应的角分别是.已知成等比数列.(1)若,求角的值;(2)若外接圆的面积为,求面积的取值范围.【答案】(1);(2).【解析】(1)化简,可得,由成等比数列,用正弦定理进行边角转化为,又,可解出,从而求出角;(2)由外接圆的面积可求出外接圆半径,且,得,再由余弦定理可求出的范围,得的范围,从而求出的范围.【详解】解:(1),又成等比数列,得,由正弦定理有,得,即,由知,不是最大
19、边,.(2)外接圆的面积为,的外接圆的半径,由余弦定理,得,又,当且仅当时取等号,又为的内角,由正弦定理,得.的面积,.【点睛】本题考查了三角函数式的化简,正余弦定理在解三角形中的应用,三角形面积的最值问题,属于中档题.18如图1,直角梯形ABCD中,AD/BC中,ABC=90°,E,F分别为边AD和BC上的点,且EF/AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的位置,AD=AE.(1)求证:AF/平面CBD;(2)求平面CBD与平面DAE所成锐角的余弦值.【答案】(1)见解析;(2)55。【解析】试题分析:(1)取DE中点G,连接FG,AG,平面,只
20、需证平面AFG平面CBD,又平面,平面,故只需证平面CBD,平面CBD即可;(2)要求平面CBD与平面DAE所成锐角的余弦值,需找两平面的法向量,取AE中点为H,连接DH,可证, 故以AE中点H为原点,AE为x轴建立如图所示的空间直角坐标系,易知BA是平面ADE的一个法向量,由可得平面BCD的一个法向量为,然后由空间两向量夹角公式去求平面CBD与平面DAE所成锐角的余弦值。试题解析:(1)证明:取DE中点G,连接FG,AG,CG.因为 CFDG,所以FGCD.因为 CGAB, ,所以AGBC.所以平面AFG平面CBD, 所以 AF平面CBD. (2)解: 取AE中点为H,连接DH.,,.,.以
21、AE中点H为原点,AE为x轴建立如图所示的空间直角坐标系,则A(1,0,0),D(0,0,3),B(1,2,0),E(1,0,0)所以DE的中点坐标为(12,0,32)因为CF=12DE,所以C(12,2,32)易知BA是平面ADE的一个法向量,BA=n1=(0,2,0)设平面BCD的一个法向量为n2=(x,y,z)由n2BC=(x,y,z)(32,0,32)=32x+32z=0n2BD=(x,y,z)(1,2,3)=x+2y+3z=0令x=2,则x=2,,z=23,n2=(2,2,23)cosn1,n2=n1n2|n1|n2|=2×0+2×223×02×
22、;25=55,所以面CBD与面DAE所成角的余弦值为55.【考点】(1)空间线面平行、面面平行、线面垂直判定定理的应用;(2)空间两平面夹角的定义、平面法向量的定义的应用;(3)空间向量的基本运算。19为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:组别30,4040,5050,6060,7070,8080,9090,100频数2515020025022510050(1)由频数分布表可以认为,此次问卷调查的得分Z服从正态分布N,2
23、10,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求P36<Z79.5;(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:(i)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;(ii)每次获赠的随机话费和对应的概率为:获赠的随机话费(单位:元)2040概率3414现市民小王要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列及数学期望.附:21014.5;若ZN,2,则P<Z<+=0.6826,P2<Z<+2=0.9544,P3<Z<+3
24、=0.9974.【答案】()P(36Z795)08186;()X的分布列为X20406080P381332316132X的数学期望为752【解析】(1)根据题中所给的统计表,利用公式求得其平均数,即正态分布对应的,再利用数据之间的关系,36=2,79.5=+,利用题中所给的数据,以及正态分布的概率密度曲线的对称性,求得对应的概率;(2)根据题意,高于平均数和低于平均数的概率各占一半,再结合得20、40元的概率,分析得出话费的可能数据都有哪些,再利用公式求得对应的概率,进而列出分布列,之后应用离散型随机变量的分布列求得其期望.【详解】()根据题中所给的统计表,结合题中所给的条件,可以求得=35&
25、#215;0.025+45×0.15+55×0.2+65×0.25+75×0.225+85×0.1+95×0.05 =0.875+6.75+11+16.25+16.875+8.5+4.75=65,又36652210,79.565+210,所以P(36Z795)=12×0.9545+12×0.6827=0.8186;()根据题意,可以得出所得话费的可能值有20,40,60,80元,得20元的情况为低于平均值,概率p=12×34=38,得40分的情况有一次机会获40元,2次机会2个20元,概率P=12
26、5;14+12×34×34=1332,得60分的情况为两次机会,一次40元一次20元,概率P=12×2×34×14=316,得80分的其概况为两次机会,都是40元,概率为P=12×14×14=132,所以变量X的分布列为:X20406080P381332316132所以其期望为E(X)=20×38+40×1332+60×316+80×132=752.【点睛】该题考查的是有关概率的问题,涉及到的知识点有平均数的求法,正态分布的性质,离散型随机变量的分布列,属于中档题目.20已知椭圆E:x
27、2a2+y2b2=1(a>b>1)的离心率e=22,其左、右顶点分别为点A,B,且点A关于直线y=x对称的点在直线y=3x2上.(1)求椭圆E的方程;(2)若点M在椭圆E上,点N在圆O:x2+y2=b2上,且M,N都在第一象限,MNy轴,若直线MA、MB与y轴的交点分别为C、D,判断sinCND是否为定值,若是定值,求出该定值;若不是定值,说明理由.【答案】(1)x24+y22=1;(2)1.【解析】(1)点A-a,0关于直线y=x对称的点0,-a在直线y=3x-2上,代入可求出a,又e=ca=22,a2=b2+c2,可解出b,c,然后得出椭圆方程;(2)设Mx0,y0,AM:y=
28、kx+2k>0,求出点C的坐标,联立直线与椭圆方程,由韦达定理求出M坐标,从而得到BM的方程,求出点D的坐标,设NxN,y0,求出NCND化简得NCND=0,所以CND=90°,sinCND=1为定值.【详解】解:(1)点A-a,0关于直线y=x对称的点0,-a在直线y=3x-2上,-a=0-2,解得a=2.又ca=22,a2=b2+c2,解得b2=2=c2.椭圆E的方程为:x24+y22=1.(2)设Mx0,y0,AM:y=kx+2k>0,令x=0,解得y=2k,C0,2k.联立y=kx+2x2+2y2=4,化简得:2k2+1x2+8k2x+8k2-4=0k>0.
29、-2x0=8k2-42k2+1,解得x0=2-4k22k2+1.y0=4k2k2+1,即M2-4k22k2+1,4k2k2+1.直线BM的斜率=4k2k2+12-4k22k2+1-2=-12k.BM的方程:y=-12kx-2,令x=0,解得y=1k,D0,1k.设NxN,y0,则NC=-xN,2k-y0,ND=-xN,1k-y0.NCND=xN2+y02+2-2k2+1ky0.xN2+y02=2,y0=4k2k2+1,NCND=0,NCND,即CND=90°.sinCND=1为定值.【点睛】本题考查了椭圆的方程,直线与椭圆的位置关系,椭圆中的定值问题,解析几何中的夹角类问题可尝试用平
30、面向量解决.21已知函数(1)若,求函数的最小值;(2)若,在上的最小值为1,求的最大值【答案】(1);(2).【解析】试题分析:(1)运用导数知识进行求解;(2)借助题设条件运用导数和分类整合的数学思想求解.试题解析:(1)时,则,则,在单调递减,上单调递增,即函数的最小值为1(2)由题意:,令则,令,则,当时,则,因为时,使得时,在上单调递减,又因为,在上,即,则在上单调递减,即时,不合题意时,即,则,又因为,在上单调递增,又,时,即在上单调递增,又因为,时,即时,在上单调递增,又因为,所以,满足题意,综上所述,的最大值为【考点】导数在研究函数的最值中的运用【易错点晴】函数是高中数学的核心内容,也是高考必考的重要考点.运用导数这一工具研究函数的单调性和极值最值等问题是高考的基本题型.解答这类问题时,一定要先求导,再对求导后的导函数的解析式进行变形(因式分解或配方),其目的是搞清求导后所得到的导函数的值的符号,以便确定其单调性,这是解答这类问题容易忽视的.本题第二问的求解过程则先预见函数在区间上单调递增,再运用分析转化的思维方式进行推证,最后求出的最大值.22以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为1,0,若直线l的极坐标方程为2cos+41=0,曲线C的参数方程是x=4m2y=4m,(m为参数).(1)求直线l的直角坐标方程和曲
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年临床执业医师考试的文化意识考点试题及答案
- 深入研究2025年公共卫生执业医师考试的试题及答案
- 应用真实案例的学习公共营养师试题及答案
- 2025年育婴师考试注意事项分析试题及答案
- zhc简易版试题及答案
- 二零二五版建设工程合同条款和专项条款
- 二零二五版建设项目担保协议书
- 二零二五简单装修合同锦集
- 二零二五商铺返租协议合同
- 二零二五招标采购廉洁诚信协议合同书范例
- 2025年第三届天扬杯建筑业财税知识竞赛题库附答案(701-800题)
- 小学科学湘科版六年级下册全册同步练习含答案
- 双减下小学数学低段作业设计与布置课件
- 一年级数学下册课件-1. 补砖问题4-人教版(共10张PPT)
- 螺杆泵工作原理和工况诊断方法
- 医患沟通技巧(PPT)课件
- 真理诞生于一百个问号之后(优秀)(课堂PPT)
- 污水处理厂防汛应急演练方案
- 慢性阻塞性肺疾病(COPD)的药物治疗
- 英文形式发票样本
- 服装质量检验表最新
评论
0/150
提交评论