版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、常用医学统计方法 统计学是以数学方法观察和比较事物的一门学科。一、研究对象:存在变异的事物或现象 变异:同质(性质相同)对象之间存在的差异。l 变异导致的现象有,个体个体;个体部分;部分部分;部分全部 上述四种不同如果是变异所致,则不同是表像,相同才是本质。l 鉴于“变异”的存在,当欲判断事物与事物有无不同时,必需考虑排除因变异导致的“假性”不同。二、基本概念: 1、总体:由研究目的确定的同质研究对象全体 2、样本:来源于总体,对总体有代表性的一部分 样本具备代表性的条件: A、遵循随机抽样(化)原则:总体中每一个体被抽取的机会均等 B、样本含量(观察对象数量)适宜3、抽样误差:(1)样本指标
2、(均来源于同一总体)之间的差别(2)样本指标与总体指标(样本来源于该总体)之差l 应用意义:抽样误差存在的原因是变异。 样本与样本之间存在的抽样误差,并非真正不同,而是“同质”。4、概率:指事件发生的可能性,用符号“P”表示 小概率事件:指P0.05( 5% )的事件。 小概率事件原理:在一次观察中小概率事件可以认为不会发生讨论1、 某病房将同类患者按入院次序编号,偶数组给予传统护理方法,奇数组给予新护理方法,每组30人。以期观察和比较两种护理法的效果。疗效评价用平均数表示则: (1)上述研究的“真正”对象,是若干还是全体糖尿病患者? (2)研究开始之前,两组对象同质吗?平均数必须相等吗? (
3、3)在研究进行之中,两组对象同质吗? (4)上述“同质”的观察角度分别是:同类病人;同类护理方法;同类效果2、(1)指出下列可能由变异导致的现象:(2)指出下列可能由抽样误差导致的现象: X :个体观察值,X :样本平均数,:总体平均数 A、X1X2 B、X1X2 C、X X D、X E、12 三、统计资料种类:资料不同,统计分析方法亦不同。1、计量资料:由定量数据组成,可以计算平均数2、计数资料:由定性数据组成,可以计算比、率3、等级资料:既有计量又有计数性质(了解)四、统计工作的基本步骤:1. 统计设计:确定研究对象、内容;控制误差随机:使样本对总体有代表性对照:平行对照(观察组、对照组)
4、;自身对照双盲:调查者不知被调查者属于何组,避免诱导误差 被调查者不知自己属于何组,避免依从性误差齐同:观察组与对照组的对象,除了被观察因素不同,其他所有条件均应相同。2、资料收集:3、资料整理:4、资料分析: 以统计指标描述样本资料(频数分析:均数、率等) 以大样本代表总体,评判个体归属(医学正常值范围) (应用在个体水平) 以样本指标估计总体情况 (总体指标可信限) (应用在总体水平) 判断样本与样本、样本与总体是否同质(假 设 检 验)(应用在样本水平) 判断不同质的事物之间是否有关系(相关与回归分析)平均数与标准差平均数1、 表示计量资料集中趋势的统计指标,是资料数值“大小”的代表,即
5、平均水平。2、常用平均数有三种:不同分布的资料选用不同的平均数。一、算术平均数:总体均数用表示;样本均数用x表示1、应用条件:数据呈正态或近似正态分布的计量资料2、计算方法:掌握计算器运算方法直接法:略。加权法:原理(与直接法相比较)l 以组中值代替原始数据。讨论 l 大样本资料可以用直接法计算均数吗?l 直接法和加权法计算公式中,“X”的含义有何区别?l 直接法与加权法计算均数,那一种结果更精确?二、几何均数(G)1、应用条件:呈对数正态分布的计量资料,如血清抗体滴度资料2、计算方法:将所有数据(X)取对数(lgX)求“算术均数”取反对数三、中位数(M)1、概念:将一组数据按大小顺序排列,居
6、中数据之数值,即为中位数。2、应用条件:呈任何分布的计量资料3、计算方法:(1)直接法:排序及目测位居中间的数据之值(2)频数表法:计算关键以n/2,找出中位数所在组段。式中:L =中位数所在组段的下限 i =中位数所在组段的组距 fm =中位数所在组段的频数 fL =中位数所在组段之前的累计频数标准差 1、是表示正态分布计量资料离散程度的统计指标。2、总体标准差 以表示,样本标准差 以S表示。3、意义:反映观察值之间的变异程度,大表示数据分散,小表示数据集中。4、计算:重点掌握“应用公式”和计算器运算:(1)直接法:(2)加权法:5、应用:(1)标准差反映了一个资料(内部)的变异程度。(2)
7、在X1.96S的范围内包含了95%的观察值,故常用X1.96S计算医学正常值。讨论 1、标准差是表示正态分布计量资料 的统计指标 A、集中趋势 B、离散程度 C、频数分布 D、数据最大值与最小值之差3、偏态分布计量资料常用 表示集中趋势 A、M B、G C、X D、S4、调查100名女大学生血清总蛋白含量(g/L),得:X = 73.82(g/L),S = 3.91(g/L)用公式X1.96S计算,理论上女大学生血清总蛋白95%正常值范围为多少?所计算的正常值范围仅适用于100名女大学生吗?如要适用于全体女大学生,研究样本必须符合什么条件?要知道人类血清总蛋白含量的情况,假如不存在变异,研究的
8、对象需要多少名?对频数表用计算器计算X和S时,掌握正确输入方法。正态分布与标准正态分布 1、每一个正态分布均能转换为标准正态分布(亦称U分布)标准正态分布正态分布U=X - X= +U X1 X2 U1 0 U2l 由于对于具体资料,与是常数。故每个X可得到一个U值,形成U分布。 如:X=时,U=0;X1与X2之间包含的面积(数据),与U1到U2之间的面积相同; 如果某X值位于X1与X2之间,则对应的U值必然位于U1到U2之间; 如果某X值大于X2(或小于X1),则对应的U值必然大于U2(或小于U1)。2、标准正态分布下的面积常数:可查表,用于计算医学正常值范围。l 如:1.6490%的面积,
9、1.9695%的面积,2.5899%的面积 将面积常数代入公式X= +U,即可换算出相同比例的正态分布之面积。l 即U=1.96之间包含着95%的U ,故1.96之间也包含95%的数据(X)。抽样误差和标准误l 抽样误差的概念?产生的原因?可以避免吗?怎样缩小抽样误差?1、原理:(1) X分布与标准误l 许多X可形成一个X分布,来源与同一总体的许多X(n相同)也可形成X分布。 n不同时,X分布也不同。l 与X分布相比,X分布的集中趋势X,离散趋势用(X)标准误表示。l 标准误“理论公式”为:X/ n “应用公式”为: SX S/ n l SX是X的估计值,计算SX仅用某个样本数据即可,但其含义
10、已超出了该样本。l 标准误的意义:(掌握) 标准误是样本均数的标准差 ;是表示抽样误差大小的统计指标;SX越小,表示 样本均数X对的代表性越好、越可靠。l 同样95%的X分布在1.96X区间内(与95%观察值范围计算相类似)(2)t分布l 由于实际上不能获得,故以S替代,计算出SX 代替X。可获得t值。l t分布与U分布一样也是标准分布,但n不同t分布不同。l 与U值一样,t值也可由查表而得。通常只需查t0.05值。 X=1.96X X=t 0.05SX (95%的X分布范围)t =X - SXX = + tSXt分布正态分布 X1 X2 t1 0 t2 即当图中t1与t2分别取值为t0.05
11、时,则 t 0.05SX之间包含了95%的样本均数(X)。l 当n100时,t分布已接近U分布,为了少查表,上式可改为X=1.96SX 总体均数可信区间1、95% 总体均数可信区间是以X为中心,两侧均延伸“t0.05SX”长度形成的一个区间。Xt 0.05 SX (n100时)X1.96 SX (n100时) -t0.05SX +t0.05SX X-t0.05SX X X+t0.05SX2、总体均数可信区间的应用意义:调查在样本水平,应用在总体水平,如保险费的估计。抽样误差和比较 以统计指标进行事物与事物的比较,称为“统计检验”或“假设检验”一、计量资料的假设检验1、 统计检验(假设检验)的前
12、提:所比较的两个X(或X与)能假设来源于同一总体,即X1X2 属于抽样误差。l 经计算t值,进行两个均数的比较,称为t检验。l 当样本含量n100时,t值已接近U值。此时可用U0.05(1.96)代替t0.05 进行判断。所进行的均数的比较,称“U检验”。2、统计检验(假设检验)步骤 - 四步(1)假设、确定检验水平H0:(无效假设)即假设两个X所属总体相同,差别为抽样误差。表达为12 H1:(备择假设)即假设两个X所属总体不同,差别为本质差别。表达为12:(检验水平)通常取5%,表达为= 0.05 (2)计算统计量 t=?(当样本含量n100时) 或 U=?(当样本含量n100时)(3)确定
13、概率值(P值) 通过t与t0.05(查表可得)比较,或U与1.96(U0.05)比较(4)用文字表达统计结果:?3、均数抽样误差的判断X转换所得 U表示X位于统计学意义1.96 (如X1)95%范围内差别为抽样误差0 (如X2)不存在抽样误差1.96 (如X3)95%范围外差别为本质差别X转换所得 t表示X位于统计学意义t0.0595%范围内差别为抽样误差0=不存在抽样误差t0.0595%范围外差别为本质差别 4、t检验注意事项: 资料应具备可比性 均数差别应有实际意义 选择适宜的统计方法 结论判断不能绝对化(May be)二、样本均数与总体均数比较(X与比较)例:正常人血清无机磷总体均数为4
14、mg/dl,某地随机抽取16个成人慢性肾炎患者,检查得血清无机磷均数为5mg/dl,标准差为1.6mg/dl。问该地成人慢性肾炎患者的血清无机磷是否与正常人有区别?(即已知:= 4 X = 5 S = 1.6 n=16)l 临床意义:证实慢性肾炎是否会导致血清无机磷含量的改变,即血清无机磷是否可以作为慢性肾炎的诊断指标或疗效观察指标。1)H0:0(慢性肾炎患者血清无机磷与正常人相同) H1:0(慢性肾炎患者血清无机磷与正常人不同) 0.052)t = X = 5 - 4 = 2.5 SX 1.6 163)= n-1 = 16-1= 15 查t值表,得t0.05(15) = 2.131 t t0
15、.05(15) P0.054)可以认为慢性肾炎患者血清无机磷与正常人不同 任 慢性肾炎患者与正常人血清无机磷的差别有显著性 选 可以认为慢性肾炎对成年人血清无机磷有影响 一 可以认为慢性肾炎会导致成年人血清无机磷上升 种三、配对资料的t检验l 配对资料:资料由成对数据 所组成。l 每对数据形成一个差数(d),即配对资料由一组“差数”组成。l 统计分析出发点:当d = 0 的时候,可以因“变异”出现d0和因“抽样误差” 出现d0的现象。 例一:应用克矽平治疗10名矽肺患者,根据下表资料,评价该药能否引起血红蛋白变化?克矽平治疗前后血红蛋白含量患者编号血红蛋白(克/升) 治疗前 治疗后差数(d)
16、1 2 3 4 5 6 7 8 910113150150135128100110120130123140138140130135120147114138120-27 12 10 5 -7-20-37 6 -8 3合计-63l 差数(d)= 治疗前测定值 - 治疗后测定值就个体而言, d为负数的临床意义? d为正数说明?就样本而言, d为负数的临床意义? d为正数说明?就总体而言,d为负数的临床意义?d为正数说明?已知: d = -6.3 Sd = 16.76 Sd = 16.76 10 = 5.31)H0:d0(治疗前后的Hb相同,即d0是抽样误差) H1:d0(治疗前后的Hb不同) 0.05
17、2)t = d d = (-6.3)- 0 = -1.89 Sd 5.33)= n-1 = 10-1= 9 查t值表,得t0.05(9) = 2.262任选一种 t 2.262 P0.054)还不能认为克矽平治疗前后血红蛋白含量不同 克矽平治疗前后血红蛋白含量的差别无显著性 可以认为克矽平治疗对血红蛋白含量无影响 四、两样本均数比较(X与X)大样本(两个样本含量均大于100)U检验 某医院研究劳动类型与血清胆固醇的关系,调查结果为脑力劳动组537人,平均胆固醇水平为4.8mmol/L,标准差为0.72mmol/L;体力劳动组643人,平均数为4.6mmol/L,标准差为0.81mmol/L。问
18、两种劳动者的血清胆固醇水平是否有差别?1)H0:12 H1:12(文字表达?) 0.05+2)U = X1 X2 = 4.8 - 4.6 = 4.4882 S12 S22 0.722 0.81 n1 n2 537 6433) U 1.96 P0.054)可以认为两种劳动者血清胆固醇水平不同 任 两种劳动者血清胆固醇水平的差别有显著性 选 可以认为劳动类型对血清胆固醇水平有影响 一 可以认为脑力劳动者血清胆固醇高于体力劳动者 种小样本:小样本作假设检验时,视n1 n2、或n1 = n2 ,公式不同。讨论 甲、乙两方法护理前后的患者血沉(mm/h)病人编号 1 3 5 7 9 11 13 15 1
19、7 19 d甲甲法护理前护理后10 13 6 11 10 7 8 8 5 9 X1 6 9 3 10 10 4 2 5 3 3 X2病人编号 2 4 6 8 10 12 14 16 18 20 d乙乙法护理前护理后 9 10 9 13 8 6 10 11 10 10 X3 6 3 5 3 3 5 8 2 7 4 X41.上表资料是某医院将同类患者按入院先后次序编号,然后随机确定单号组给予甲护理 方法,双号组给予乙护理方法,这种分组法属于 方法 A.简单随机抽样 B.系统抽样 C.分层抽样 D.整群抽样 2.上述研究属于 。 A.病例回顾调查 B.现况调查 C.前瞻性调查 D.实验观察调查3.上
20、述研究开始时的两组对象 。 A.必须来源于同一总体 B.必须来源于不同总体 C.可以来源于相同的总体 D.可以来源于不同总体4.在研究过程中,两组对象应该是 。 A.属于同一总体 B.属于不同总体 C.A和B 都有可能 D.A和B 都不可能5根据上述资料,判断甲护理法是否有效,下列 说法是错误的 A. 可用配对t检验 B. 可用两样本均数t检验 C. 成对t检验P0.05时,成组t检验一定是P0.05 D. 成组t检验P0.05时,配对t检验一定也是P0.056. 要判断甲法是否有效,(d为护理前血沉值减护理后血沉值,下降表示有效),能否作 配对t检验的前提是 A.d甲0 B.d甲0 C.d甲
21、=0 D.d甲d乙7. 对甲法组作配对t检验,下列H0含义,错误的是 。 A.10名予甲法的患者护理前后血沉值相同 B.予甲法的患者护理前后血沉值相同 C.甲护理法对血沉无影响 D.甲法护理无效8对甲法组作配对t检验, P0.05时,下列 表达是错误的 A甲法护理前后患者的血沉水平不同 B可以认为甲护理法有效 C可以认为甲护理法对血沉有影响 D可以认为甲护理法会降低血沉9对甲法组作配对t检验时,自由度为 。 A9 B10 C. 18 D. 20 10作d甲和d乙比较的t检验,判断甲、乙两法对血沉影响力的区别,其前提是 . A.甲法可降低血沉,乙法无效(即前者配对t检验P0.05,后者P0.05
22、) B乙法可降低血沉,甲法无效 C. 甲、乙两法均无效 D. 甲、乙两法均可降低血沉 11你对题作出判断是基于下列 t检验注意事项,选择于本题下面。 A资料应具备可比性 B均数差别应有实际意义 C. 选择适宜的统计方法 D. 判断结论不能绝对化 3. 5. 6. 8. 10. .直线相关与回归分析一、相关和回归分析的区别与联系1、区别:(1)相关分析:判断事物有无关系及密切程度 (2)回归分析:用数学方程表示关系,目的是从X推测Y。2、联系:先确立相关关系,后建立回归方程。二、分析前提:1、相关分析:所分析的事物不同质(属于不同的总体)2、回归分析:(1)相关关系成立(2)正确选定自变量(X)
23、与应变量(Y)三、相关分析:掌握计算器计算。1、r的意义:1)r数值上介于 1到 +1之间;r0,表示直线负相关;r0,表示直线正相关2) r 越接近0,相关越不密切;r 接近1,相关密切; r =1时,呈完全直线相关2、相关系数r的计算与显著性检验(四步)1)假设: H0:= 0 H1: 0 = 0.052)计算r:用计算器。3)确定P值:= n2 ,查表。当rr0.05时,P0.05;当rr0.05时,P0.054)文字表达结果:P0.05时,可认为有直线相关关系 P0.05时,可认为直线相关关系不成立六、回归分析:建立回归方程Y = a + bX,b为斜率,又称为样本回归系数。1、b的意
24、义:表示X对Y的影响力。b为负数,负相关;b为正数,正相关。2、回归方程的应用:由X值,推断相应的Y值。(三)相关回归分析的注意事项1、作相关与回归分析要有实际意义,且变量X与Y均呈正态分布。2、相关与回归的应用,仅限于 原实测数据范围 内,不得任意外延。3、由X推断Y和由Y推断X的回归系数及回归方程是不同的,切勿混淆。4、事物的关系有:因果关系、间接关系、虚假关系,相关回归分析无法区分相对数一、相对数概念:计数资料的统计指标。二、常用的相对数种类:率、构成比、(相对比-了解) 1、 率:说明现象或事件发生的强度指标2、 构成比:说明事物内部各部分所占的比重指标三、相对数应用注意事项1、 样本
25、含量不宜过小2、 不要把“构成比”错当成“率”使用3、 正确计算总率(合计率、平均率)计算练习 某地居民年龄别肿瘤死亡情况年龄组(岁)人口数死亡数构成比(%)死亡率(1/十万) 0- 20- 40- 60 82920 46638 28161( )( ) 12( ) 32( )( ) 46.7 35.6 4.82( )( ) 341.48合计( ) 90( )( )4、 统计指标相互比较时,应具“可比性”怎样选择对照组,才能保证观察结果比较具有“可比性”?调查儿童寄生虫感染率,下列那些相比有可比性? (a)男童蛔虫感染率(b)女童蛔虫感染率(c)男童钩虫感染率(d)女童钩虫感染率率的标准化目的:
26、合计率作相互比较时,由于内部构成不同导致不可比性。 率的标准化,使资料具备可比性,方能进行统计分析。注意: “标化率”是虚拟的(不是实际情况),只有作“比较”时才有意义。举例: 某年甲乙两厂石棉工人的石棉肺患病比较年龄组(岁) 甲 厂 接触 患病 患病率 人数 人数 () 乙 厂 接触 患病 患病率 人数 人数 ()4545 400 4 10.0 600 18 30.0 800 10 12.5 200 10 50.0合计1000 22 22.01000 20 20.0l 什么是内部构成不同?l 两厂“合计患病率”、“年龄组患病率”均具有可比性吗?某年甲乙两厂石棉工人的石棉肺患病比较(经标化)年
27、龄组(岁)标准人数甲厂预期患病 患病率 人 数 ()乙厂预期患病 患病率 人 数 ()4545 1200 800 12 10.0 24 30.0 15 12.5 40 50.0合计 2000 36 18.0 55 27.5l 标准人数是怎样组成的?体会两厂标准人数相同时,消除了内部构成不同。l 表中那些数据是“真实”的?找出表中的“标化率”?l 为什么甲厂的“合计率”经“标化”后下降了?l 甲厂实际的石棉肺患病率究竟是22.0还是18.0?l 根据“标化率”能说患病情况乙厂较甲厂严重吗?5、 计算相对数时,应合理选择分子与分母卡方检验适用于因变量和自变量都是分类数据,单因素方差分析适用于,自变
28、量是分类变量,因变量是连续数据。线性相关性检验 Linear-by-Linear Association:仅用于当两变量均为等级变量的资料。双向无序分类资料为两个或多个样本,做差别检验(例7-7);若为单样本,做关联性检验(例7-8) 。四、临床常用的相对数指标 1、疾病统计指标:(1) 发病率:常用“年发病率” 总发病率(传染病、院内感染等)和某病发病率 年发病率= 年内新发病例数 1000 年均人口数(2) 患病率:时点患病率与年患病率,常用于慢性病。 患病率= 年(时点)内患病人数 K 同期调查人口数 2、死亡统计指标:(1) 总死亡率:也称“粗死亡率” 年死亡率 = 年内死亡总人数 K
29、 年均人口数(2) 疾病别死亡率:也称“某(类)病死亡率” 某病死亡率 = 年内因某病死亡数 K 年均人口数(3) 年龄别死亡率:即某年龄组死亡率 年龄别死亡率 = 某年龄组死亡数 K 同年龄组年均人口数(4) 某(类)病病死率: 某病病死率 = 因某病死亡数 K 同期该病患者数(5) 死因构成比:某病死亡数占总死亡数的比例(重)举例 某社区年均人口数为8万,内60岁及以上人口2万。年内共死亡120人,其中60岁及以上死亡80人;在全部死亡者中,因肿瘤死亡共80人,其中肺癌死亡32人。年内发现肺癌患者共50人。该社区年内共出生100人。(1)总(年)死亡率() (2)60岁及以上(年)死亡率(
30、)(3)肿瘤(年)死亡率(/十万) (4)肺癌(年)死亡率(/十万)(5)肺癌(年)患病率(/万) (6)肺癌(年)病死率(%)(7)年 出 生 率() (8)(年)人口自然增长率()二、计数资料的假设检验:(一)率的抽样误差:Sp是表示率的抽样误差的统计指标 P代表样本率,代表总体率。掌握Sp的计算(应用公式)。 总体率的估计:95%可信区间,即位于该数值区间的可能性为95%。用公式用P1.96Sp计算(当n100时)(二)四格表卡方检验(X2检验):是计数资料常用的显著性检验。比较两个率或构成比。1、 卡方检验的准备工作(1)联列表:以两对阳性实际数和阴性实际数列表。(2)计算出最小理论数
31、,判断能否作检验,是否需要校正1)每个格子T5,且N40,可检验不必校正2)若有1T5,且N40,可检验需要校正3)若有T1或N40时,不可作卡方检验2、检验步骤(1)假设:H0:12 H1:12 =0.05(2)计算统计量: X2 =“交叉相乘差平方,乘角除边得卡方”。(3)确定P值:X20.05(1)= 3.84,当X23.84,P0.05;当X23.84,P0.05(4)文字表达结果:(三)行列表(RC表)卡方检验适用于两个以上的率或构成比的比较l RC表卡方检验对资料的要求:(1)任何格子的理论数必须都大于1。(2)1T5的格子数不得超过总格子数的1/5。l 如果出现上述任何一种情况,
32、可采用下列措施A 扩大样本继续调查,增加数据量以增大理论数,直至符合要求。B 可将性质相近的邻行或邻列合并,重新计算理论数直至符合要求,但不可将不同性质的行或列合并(2)自由度=(R-1)(C-1) X20.05()可查表获得。(四)配对计数资料卡方检验 当b+c40时,用正常公式,当b+c40时,用校正公式。统计表 1、结构与要求-表格基本框架 标 题纵 标 目横标目数 据合计1) 标题:表达主题,位于表格上方。2) 标目:是表格制作优劣的关键。横标目说明观察角度,纵标目说明数据性质。3) 数据:数据单位写在纵标目或标题内。两类数据:基础数据和统计指标4) 线条:不设纵线。2、简单表与组合表
33、:前者观察角度为一个,后者为两个。讨论 某地1990年男、女HbsAg阳性率性别调查人数阳性人数阳性率(%)男女423445303031817.164.00合计87644845.5219791982年成都小学儿童身高年增长值(cm)年龄(岁)男 人数 均数 标准差女 人数 均数 标准差 7 8 9 10 11 12721983223513563225.905.885.175.266.497.720.931.011.131.532.302.451082132343383703166.075.426.186.786.595.130.941.581.841.721.721.961) 此表格与上表格相
34、比,区别何在?(表格种类;资料性质;应用目的)2) 此表格中哪些为基础数据?那些是统计指标?3) 数据的观察角度?组合表之“组合”体现在横标目上?表格中怎样表示数据单位? 试制作一个反映各年级小学生近视眼患病率变化趋势的表格(框架)。 试制作一个比较缺铁性贫血患者与健康人按性别区分红细胞数量多少的表格(框架)。统计图 1、制图通则:(1)根据资料性质选用适宜的图形直条图:观察独立统计指标的比较;线图:观察连续指标变化趋势;构成图:观察资料内部各部分所占比重(2)标题-表达主题,位于图的下方。(3)坐标图(直条图和线图)l 纵轴为统计指标轴,从0开始;横轴为观察角度轴l 数轴三要素:标目、单位、
35、尺度(4)需附图例说明的统计图:复式图与构成图2、示例:1)直条图:某地各种职业人群高脂血症患病情况职业 男调查数 患病率(%) 女 调查数 患病率(%)工人农民职员 102 77 107 2.9 9.1 16.8 80 86 91 25.0 2.3 11.0 25 女 患 病 20 男 率 15 % 10 5 0 工人 职员 农民 某地各种职业人群高脂血症患病情况讨论l 单式图和复式图与统计表(简单、组合)有什么关系?l 统计图纵、横轴与统计表纵、横标目有什么关系?以患病人数作图为何不妥?l 上述统计图的纵横轴都是数轴吗?数轴三要素?如果横轴以性别分类可以吗? 2)线图: 19791982年
36、成都儿童身高年增长值(cm)年龄(岁)男 人数 均数 标准差女 人数 均数 标准差 7 8 9 10 11 12 13 14 15721983223513563222962661735.905.885.175.266.497.727.934.553.160.931.011.131.532.302.452.382.612.121082132343383703162962001216.075.426.186.786.595.133.751.461.240.941.581.841.721.721.962.161.271.10 身 高 男 年 10 女 增 值 8 (CM) 6 4 2 0 7 9 11 13 15 年龄(岁) 19791982年成都儿童身高年增长值(cm)l 上图是单式图还是复式图?这与统计表有什么关系?l 上述统计图的纵横轴都是数轴吗?说出数轴制作的要素?l 上述统计图的制作符合制图通则吗?回顾制图通则!3)构成图:以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 糖尿病模型讨论与分析
- 物业客服部员工培训
- 露天矿山安全培训课件经典
- 互联网平台会计劳动合同
- 城市综合体外保温施工合同
- 生物科技办公楼施工承包合同
- 山东影剧院建设合同
- 墙纸施工合同幼儿园欢乐世界
- 地下商场建设钻探施工合同
- 教育信息化项目招投标攻略
- 北京市第四中学2024-2025学年七年级上学期期中生物学试题(含答案)
- 学前教育法学习重点1
- 体育教师先进个人事迹材料
- 幼儿园中班健康《运动过后》课件
- 2025届江苏省苏州市第一中学物理高三第一学期期末学业水平测试模拟试题含解析
- 企业财务管理数字化转型实施方案
- 第九课+发展中国特色社会主义文化+课件高中政治统编必修四哲学与文化
- 牙用漂白凝胶市场环境与对策分析
- 2024年山东省济南市中考英语试题卷(含答案)
- 人教版七年级道德与法治上册 期中复习知识梳理
- 3.1 农业区位因素及其变化 课件 高一地理人教版(2019)必修第二册
评论
0/150
提交评论