工业循环冷却水处理讲义_第1页
工业循环冷却水处理讲义_第2页
工业循环冷却水处理讲义_第3页
工业循环冷却水处理讲义_第4页
工业循环冷却水处理讲义_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、工业循环冷却水处理讲义讲 课 提 纲一、循环水化学处理的意义1、化学处理的目的2、不处理或处理不善所带来的危害3、经济比较二、结垢、污垢、腐蚀的机理三、微生物问题四、循环水的化学处理1、补充水处理2、循环水旁滤处理3、循环水化学处理3.1、杀菌灭藻,解决污垢问题3.2、阻垢、缓蚀、阻垢剂及其阻垢作用、缓蚀剂及其缓蚀作用、缓蚀阻垢配方的选择五、管理问题一、循环冷却水化学处理的重要意义1、化学处理的目的循环冷却水系统主要存在三个问题:(1)结垢;(2)腐蚀;(3)污垢。循环冷却水处理的目的就是要解决上述三个问题。2、不进行处理或处理不善所带来的危害工业用水,各种不同的产品种类、生产工艺流程和用水目

2、的,对水质的要求也不尽相同,但对占工业用水80以上的冷却用水水质要求,基本上是大同小异的,对冷却水水质处理技术要求是较严格的。五十年代的工业企业,对冷却水的处理只是要求把水冷却下来就行了,至于对冷却水的水质要求仅仅是一项悬浮物控制在50毫克/升,短期最高不要超过100毫克/升就行了。在这样的概念指导下,体现在设计工作中是加大换热器面积。增加备用设备,提高设备腐蚀裕度。尽管设计是这样做了,但仍然不能解决稳定生产的要求,表现在生产中则是:(1)用水量不断增加,工厂没有新产品,产量也没有增加,但用水量却远远超过设计值,经常碰到的是要求增加供水设备,增加投资开辟新水源;(2)检修频繁,生产周期缩短,产

3、量长期达不到设计水平,有些工厂的换热器设备不是被垢阻塞了,就是换热管被腐蚀穿孔,经常需要检修;(3)设备寿命降低,一般来讲换热设备的使用寿命为7-8年左右,如不进行处理或处理不当,则寿命大大降低,有的工厂不到半年就出现腐蚀穿孔。冷却水处理不当或不经处理,所带来的危害原因及其后果如下 所示。概括起来是:造成结垢和污垢沉积,带来热交换效率降低,管道堵塞,阻力增加,通水能力降低,动力消耗增加,检修频繁。造成腐蚀会缩短设备使用寿命,影响工厂的稳定、安全生产。现代化的工厂,由于设备能力大,换热器的传热系数大,换热管的管壁厚,一般是2mm,有的甚至是10mm,设备腐蚀裕度小,自动化水平高,连续生产强等特点

4、,如果某一台设备发生故障,会引起全厂性停车,某一台设备传热效率下降也都会引起整个工厂产量的降低。因此对循环冷却水水质处理的技术要求也越加严格,应引起设计部门、工厂,特别是主管的管理部门的领导足够的重视。3、经济比较现代工厂一般水冷器在未进行循环水化学处理时其寿命为2年左右,经水处理后可达7-8年,检修费用可降低90左右,据一个小型化工厂的统计由此节约的检修费用可达50万元。由于水处理技术保证了换热设备的高效运行,可实现生产满负荷运行。如北京燕山向阳化工厂水处理换热器严重结垢,处理后实现了满负荷生产运行,增加了产量,月增收利润171.9万元,又如山西维尼纶厂水处理前由于结垢,使原料不能回收,运行

5、三个月就要停车,工厂处于亏损状态,处理后由于回收了原料,生产可维持一年不停车的运行,扭转了亏损,并增收利润180万元。对循环水不进行处理或处理不善,对换热器的腐蚀也是相当严重的。在70年代中期引进13套大化肥厂,由于对循环水化学处理认识不足,重视不够,好几个厂运行不到半年就出现换热器腐蚀穿孔,被迫停车检修,30万吨/年合成氨的大化肥厂,一天就是1000吨氨,1600吨尿素的产量,年产30万吨乙烯,停产一天尽利税就损失400-500万元,另外还有检修费用和原材料消耗费用等。有人曾做过这样的统计,就是循环水未经处理的检修费,是循环水采用处理后的药剂费加检修费的6-7倍,这仅仅是检修费与药剂费的比较

6、,还未计算停工损失等费用,因此搞好循环水的化学处理,对工厂的经济效益是有利的,对工厂长周期、满负荷的安全稳定生产都是有利的。二、产生结垢、污垢、腐蚀的机理结垢(scaling):水中的重碳酸根与钙、镁离子所组合的重碳酸盐,在热交换器中因受热失去平衡而再组合成另一种溶解度较低的碳酸钙或氢氧化镁。 容度积 Ksp=4.8×10-9(25)Ca(HCO3)2 CaCO3+CO2+H2O 1.0×10-5(25)Mg(HCO3)2 MgCO3+CO2+H2O 1.0×10-5(25)MgCO3+H2O Mg(OH)2+CO2从上述反应式中可以看出钙、镁的重碳酸盐是反溶解度

7、的,随着温度的升高,溶解度随之降低。影响结垢的因素:(1)离子组成,如属于重碳酸钙、镁型水,则结垢的可能最大,因为这种类型水中的钙、镁盐是形成结垢的主要物质,其他如钙、镁的硫酸盐或氯化物,它们的溶解度都很大,不致产生结垢;(2)碱度,碱度增高,PH值亦随之增高,则碳酸钙就易从水中析出;(3)悬浮物,它可做为微溶盐类(如CaCO3)的晶核,起着促进微溶盐结晶沉积的作用;(4)温度,它直接影响着冷却水的结垢过程,水温高则冷却水结垢的倾向就越大,因为水温升高加速重碳酸盐的分解,尤其是在水与换热器接触的金属壁面上,由于壁温较高,有时在局部地方产生过热现象,从而加速冷却水中难溶盐类的结晶过程。污垢(fo

8、uling):由于微生物的作用,细菌的新陈代谢而生成的分泌物,与悬浮物的结合作用产生污垢。微生物的来源主要有两个方面,一是来自补充水,地下水中微生物含量较少,地面水都不同程度的含有各种微生物,湖泊、水库以及受污染的地面水微生物含量较多;另一来源也是更重要的来源是冷却塔,我们知道冷却塔的作用是将水冷却下来,它是由空气将水的热量带走,水在冷却塔冷却过程中也是将空气中灰尘洗涤的过程,据资料介绍一克大气灰尘约含有5000万到1亿个细菌,循环水中的温度、PH值以及可提供的营养物是微生物滋生繁殖的良好环境。在换热器、管道的壁上的污垢是粘糊糊的,滑溜溜的,污垢底层由于厌氧细菌作用以及氧的浓差电池作用,极易产

9、生垢下腐蚀,在很多冷却系统中的换热器腐蚀穿孔事故中,微生物的作用是一个很重要的因素。因此加强杀菌灭藻,降低循环水的悬浮物,循环水增设旁滤池是非常必要的。腐蚀():冷却水对金属的腐蚀主要是电化学腐蚀和微生物腐蚀。因为冷却水中含有盐分,因而构成了电介质能导电,另外金属内部的组成结构的不一致性,例如碳钢本体中的碳(C)和铁素体,从而在金属内部不同部位之间就产生电池差,这就为腐蚀提供了推动力。这两点是产生电化学腐蚀的基本条件。冷却水在循环冷却过程中由于和空气的充分接触,水的溶解氧往往接近于饱和程度,氧在电化学腐蚀过程中是一种去极化剂,所以它是电化学腐蚀的极为重要因素之一。冷却水与铁金属接触时,由于铁金

10、属表面的电位不同,就在局部出现了原电池,在铁表面被溶解(或氧化)的部位,或者说失去电子的就称为阳极,其反应为:Fe Fe+1+2e,与此同时当冷却水处于接近中性或微碱性的PH值时,氧在阴极被还原,O2+2H2O+4e 4OH-,在阴极产生带负电荷的OH-与阳极溶解到水中的Fe2+结合生成氢氧化亚铁沉积物Fe2+2OH-Fe(OH)2,这种Fe(OH)2进一步氧化变成氢氧化铁4Fe(OH)2+O2+2H2O 4Fe(OH)3。从上述电化学腐蚀过程来看,产生电化学腐蚀时必须由阴极和阳极反应所组成,抑制阴极反应或阳极反应,或者同时抑制这两种反应,是控制金属腐蚀的直接方法。在冷却水PH6.5-8.5时

11、,金属的腐蚀形态多为局部性腐蚀,这是危害性比较大的。影响腐蚀的外界因素:(1)溶解氧,不论是碳钢或是铜的腐蚀速度都是随着水中氧浓度的增加而加快,在钢铁金属表面,氧浓度不同时,根据电化学氧浓差电池原理,低浓度的金属表面成为阳极,形成局部腐蚀,例如在沉积物或生物粘泥下面往往产生局部腐蚀而穿孔这种腐蚀危害性比较大。(2)含盐量,含盐量高水的电阻小,导电强,因而使腐蚀电池的电流加强,加速了去极化作用,腐蚀速度就必然增大。(3)悬浮物,冷却水中悬浮颗粒表面大多是带有负电荷的,它能与二价铁离子产生吸附作用或电中和作用,在换热器壁面上由于局部过热的影响,也能促进这种吸附过程的进行,同时水中的微生物新陈代谢的

12、粘液与悬浮颗粒、二价铁离子等,能吸附和积聚在换热器和管道壁面上,形成不均匀的污垢层,这种污垢层不但影响换热器的传热效率,同时也会加剧金属的腐蚀,试验证明在含较多悬浮物的冷却水中,其腐蚀速度比过滤水高三倍以上,但问题是不均匀的污垢层下腐蚀是局部腐蚀,这就更具有危险性。(4)水温,水温升高,水的粘度降低,氧的扩散速度加快,从而导致腐蚀速度将成倍增加,但温度升到一定值时(约80),腐蚀速度就开始下降,温度达到100时,水的溶解氧趋近于零,此时腐蚀将停止。因此,一般做循环水动态模拟试验或现场检测换热器的壁温取75-80,就是这个道理,此时的条件比较苛刻。(5)流速,换热器中水的流速过大,而造成机械冲刷

13、;流速过低,特别是水走壳程的换热器如流速小于0.3m/s,易产生污垢沉积,从而造成垢下腐蚀,在这种情况下,再好的水稳配方也是无济于事的,因此换热器水的设计流速不得大于1.5m/s,最低不得小于0.3 m/s,水走壳程换热器即使是0.3 m/s的流速,也常常会产生污垢沉积,因此建议在换热器的入口端加一根气体(氮气或空气)吹帚管,最好是在每个拆流板处加,以定期进行范围内,PH值与腐蚀速度变化不大;如小于4.3时,则由于水中放出的氢离子多而造成腐蚀,这种腐蚀称为酸性腐蚀;如PH>8.5时,水中的OH-增加,则会在金属表面上形成Fe2O3的钝化层,从而降低了腐蚀。一般天然水在循环过程中的自然PH

14、约在8.5-9.2范围内。(7)氯与硫酸根离子,这两种离子属于腐蚀性离子,一般认为氯离子的离子半径小(约3.6A),穿透能力强,氯离子浓度高时极易穿透不锈钢换热器的钝化保护膜。冷却水中Cl-的允许浓度,应根据设备材质、设备结构、水的流态等因素有关。当设备在制造和安装过程中没有应力的情况下,冷却水中Cl-可允许600-700ppm,如有应力存在,即使Cl-只有几个ppm的情况,也会造成腐蚀。SO42-介入认为它可吸附在金属表面的钝化膜上,导致钝化膜的去极化作用,促进了腐蚀;但多数人认为SO42-在冷却水中有利于硫酸盐还原菌的滋生繁殖,还原生成H2S促进金属的腐蚀。Larson在1958年提出Cl

15、-、SO42-与总碱度之比小于1时,能减轻碳钢的腐蚀速度,其关系式是:R=(SO42-+ Cl-)/总碱度,式中单位均为ppmm。近来有的水处理公司在给出水处理配方时,同时也给出了Cl-和SO42-的极限浓度,这样就给设计人员和工厂应用带来很多方便。(8)铝离子、铁离子,预处理中采用铝盐或铁盐做混凝剂,在混凝沉淀过程中,过剩的铝盐或铁盐未反应完全而水介析出带入冷却水中。冷却水中Fe3+不仅能在金属表面形成沉积,而且还能溶解元素铁,造成设备腐蚀2 Fe3+Fe3Fe2+,如冷却水含有2ppm Fe2+时,可使碳钢设备的腐蚀增加6-7倍,另外铁离子是铁细菌的营养源,铁细菌附着在换热器或管道壁上能使

16、元素铁溶出,形成暗褐色铁瘤,腐蚀穿孔就此处开始。铝离子将会在冷却系统中形成铝泥(氢氧化铝和水中胶体杂质凝聚的沉积物)也会导致垢下腐蚀。(9)氨,在合成氨厂空气中含氨较高或由于设备的泄漏污染了冷却水。氨与水中的重碳酸钙反应生成碳酸钙沉淀和碳酸氢铵或碳酸铵,NH3+H2ONH4OHNH4OH+Ca(HCO3)2CaCO3+NH4HCO3+H2O或2NH4OH+Ca(HCO3)2CaCO3+(NH4)2CO3+2H2O其次是氨对铜或铜合金设备有腐蚀作用,NH4OH+Cu2+Cu(NH3)2+H2O,所生成的这种铜氨洛合物极易腐蚀铜或铜合金设备;第三是氨给水中的亚硝化细菌创造了良好的滋生繁殖条件,亚硝

17、化菌是一种化能自养菌,它能把氨转化成亚硝酸, 亚硝化菌2NH3+3O2 2HNO2+2H2O+能量,同时水中有硝化细菌,它能把亚硝酸进一步氧化成硝酸 硝化菌,2HNO2+O2 2HNO3+能量,如果水中存在有反硝化菌,它能将上述反应生成的HNO3还原成NH3,反硝化菌是属于好氧细菌,所以这步反应是在缺氧的条件下进行的,反硝化菌NO3+4H2 NH3+2H2O+OH-,水中含氨,在这三种细菌的不断作用下,循环水的PH波动很频繁,这就给化学处理带来很大麻烦,因此在合成氨厂应尽量避免漏氨,如有漏氨应就近排放,以不致漏入冷却水中,另外在合成氨厂应加强对冷却水中这三种细菌的分析检验,及时判断占优势的菌种

18、,采取抑制措施。三、微生物问题微生物的种类很多,在冷却水中能引起问题的微生物主要有三类:藻类、细菌和真菌。地下水中微生物含量较少,地面水中都含有不同程度的各种微生物,循环水中微生物由空气尘埃带入的要比由补充水带入的多,一克大气尘埃含有细菌54万-1亿个,循环水的温度、PH以及可提高的营养源,是微生物滋生繁殖的良好环境。微生物的繁殖、新陈代谢和水中悬浮物,是导致冷却水系统产生污垢沉积和腐蚀的严重后果,石油化工企业冷却水系统的换热器、管道所发生的腐蚀穿孔事故中,微生物的作用是一个很重要的因素。藻类:循环水中常见的有绿藻、蓝藻、硅藻。藻类滋生的三个要素:空气、水和阳光。冷却水的配水系统、塔壁和进风百

19、页窗等处均为藻类滋生提高了这三个要素。藻类在循环水中滋生严重时,会导致配水装置喷头堵塞,影响配水均匀性,从而降低冷却塔的效率,有些藻类在代谢过程中产生恶臭,影响水质;藻类死亡或代谢形成的粘泥,对换热器、管道危害极大。真菌:真菌是靠寄生或腐生来生活,生长繁殖靠细胞外分泌出来的酶素分解植物性或动物性物质而获得所需的营养。木材是由纤维素。半纤维素和木质素组成,线状真菌的新陈代谢可使木材中纤维素破坏,从而降低了木材的强度;由担子菌产生的白霉病和赤霉病可破坏木材中的木质素和纤维素。细菌:细菌的种类很多,按其所需的营养源来分自养菌和异氧菌,自养菌是从无机物氧化过程中获得其生活的能量;异氧菌是靠水中的有机碳

20、化合物的分解而生活,也可从无机物氧化过程中所产生的能量生活。按需氧情况又可分为好氧细菌。厌氧细菌。好氧细菌是在水中有氧情况下生存和滋长,大多数异氧菌即属这一类,以及铁细菌、硫细菌等;厌氧菌则是在无氧条件下生存,如硫酸盐还原菌和反硝化菌即属此类。能产生胶囊的好气菌可以形成由多糖和多酞物质所组成的粘性外壳,这层外壳能保护它的细胞不与环境接触,并粘结其他营养物;能形成孢子的好气菌产生的粘泥比成囊的好气菌要少些,由于形成了孢子,杀死这类细菌比较困难些,好气的硫细菌能把硫和硫化物氧化成为H2SO4,2S+3O2+2H2O2H2SO4,已经发现换热器局部区域产生浓度较高的H2SO4,使PH值下降到1.0。

21、在好气的硫细菌下面往往还寄生了厌气的硫酸盐还原菌。硫酸盐还原菌含有一种氢化酶,这种氢化酶能利用金属在电化学腐蚀过程中阴极生成的氢,将水中的硫酸盐还原成硫化物。 细菌SO4”+4H+ S”+4H2OS”与金属腐蚀所溶解出的铁离子结合生成黑色的硫化亚铁沉积。S”+Fe2+FeS 3S”+6OH-3Fe(OH)2总反应4Fe+ SO4”+4H2OFeS+3Fe(OH)2+2OH-硫酸盐还原菌是在厌氧条件下所造成的腐蚀都是垢下腐蚀,腐蚀形态为点蚀,在点蚀孔内靠近金属表面的腐蚀产物是松软的黑色硫化亚铁(FeS),在未和空气接触前,加入盐酸可闻到臭味的H2S,在污垢中可检测到硫酸盐还原菌,点蚀孔除去污垢,

22、金属表面非常光亮。铁细菌是好气细菌,是依靠铁和氧进行生存繁殖,它依靠亚铁离子氧化成高铁离子所放出来的能量以维持生命,当铁溶解时大量的亚铁离子就储存在细菌体内,而在细菌表面上则生成了氧化后的产物-三价铁的氢氧化物棕色粘泥。当水中有铁离子存在时,就很容易产生铁细菌,铁细菌粘附在金属管壁上形成了从红棕色到黑褐色的瘤,有时中间为黑色的而外面则是淡褐色的色层,瘤下面则是一个点蚀坑。硝化细菌、亚硝化细菌和反硝化细菌已如前所述。循环水中微生物对换热设备的危害是极大的,归纳起来有以下几个方面:(一)促进对金属的腐蚀微生物对金属的腐蚀往往总是伴随电化学腐蚀,微生物腐蚀最主要的原因是生物粘泥,生物粘泥覆盖下的金属

23、表面是贫氧区,由于氧浓差电池的作用使金属遭受局部腐蚀;另外在厌氧区(粘泥里层)硫酸盐还原菌产生的H2S气体(CaSO4+8H+Ca(OH)2+2H2O+H2S),硫细菌和铁细菌所产生酸性环境(Fe+2H2OFe(OH)2+2H,2S+3O2+2H2O2H2SO4)其危害也特别严重。(二)影响传热许多细菌在新陈代谢过程中所分泌出的粘液与水中的无机物、有机物、悬浮物以及菌、藻残骸等物质粘结在一起而产生生物粘泥,生物粘泥的危害除了上述促进换热设备的腐蚀外,就增大了热阻,降低了换热效率。(三)由于藻类和生物粘泥,导致冷却水配水不均,影响冷却效果。四、循环水的化学处理1、杀菌灭藻杀菌灭藻并不是将循环水中

24、的菌藻全部杀死,而是将菌、藻控制在允许的范围内,一般对异氧菌控制在1×105个/ml以内,如超过这个数字,就要投加杀菌灭藻剂。杀菌灭藻剂分为氧化性和非氧化性两类。氧化性杀菌灭藻剂,在循环水中经常使用的氧化性杀菌灭藻剂是液氯,因为液氯价格比较便宜。液氯的杀菌作用:Cl2+H2O=HOCl+HCl起作用的是HOCl,HOCl透过细胞壁进入细菌体内,发挥氧化作用,使细菌中的酶遭到破坏,细菌的养分要经过酶的作用才能吸收,酶被破坏,细菌也就死亡。液氯的投加一般是每天2-3次,气温较高的季节5-10月每班加一次,其他月份每天2次;每次投加2小时维持余氯0.5-0.8mg/L。液氯投加地点应在塔池

25、底部0.3-0.5m处。非氧化杀菌剂,氧化性杀菌剂液氯虽具有杀菌效果好、价格低廉、货源易得、使用方便等优点,但也有一些缺点,如对某些菌种抗药性、在P高H值杀菌效果较低、渗透力及剥离效率较低,水中亚硝酸根较高时,氯可氧化成硝酸盐、氯能使木质素氧化成酸类或醛类,因此需辅以投加非氧化性杀菌剂。非氧化性杀菌剂的品种较多,一般可用于循环水的有氯酚类、季胺盐类、二硫氰基甲烷、戊二醛、二溴氮川丙稀酰胺、氧化三丁基锡以及异噻唑啉酮的氯化物等。选择非氧化性杀菌剂要根据以下几个因素:a、广普高效,应用PH值较宽;b、具有渗透性和剥离性;c、对环境无污染;d、与水处理剂(阻垢缓蚀剂)相溶性;我国使用较多的有以下几种

26、:二氯酚双(5-氯-2-羟基卞基)甲烷,1975年由法国引进,曾在某些大化肥厂使用过,这类产品对真菌效果较好,一些木制冷却塔使用二氯酚喷洒以杀灭真菌,由于毒性较大,难以降价,现已很少使用。二硫氰基甲烷是一种高效广普的杀菌剂,杀菌效果较好,但在高PH(8.5)时能迅速水解成硫氰酸盐、甲醛和少量硫化物。SQ8=二硫氰基甲烷(10)+1227(20)+溶剂和表面活性剂(70)S15二硫氰基甲烷(10)+溶剂和表面活性剂(90)季胺盐在循环水中使用较多的是1227(十二烷基二甲基卞基氯化铵)和JN-2(季胺盐的复合配方)。1227和JN-2具有高效广普,使用PH较宽,另外渗透能力和剥离效果特别好,这是

27、当前国内使用最广泛的品种,使用浓度较高时会产生较多泡沫,需添加适量的消泡剂。季胺盐的杀菌机理:a、季胺化合物中氮原子带正电荷,细菌一般带负电荷,因此季胺盐可以被这些细菌吸附,改变了细胞原生质膜的物理化学性质,从而使细胞的活动不正常;b、季胺盐中的十二烷基能溶解微生物体表面的脂肪壁,从而杀死微生物;c、一部分季胺化合物可以透过细胞壁与菌体蛋白质或酶反应,导致代谢异常,从而杀死微生物;d、季胺化合物与细胞质膜中的磷脂类物质作用,引起细胞自溶而死亡。季胺盐由于具有表面活性而有分散性能,所以它除了有杀菌灭藻作用外,对生物粘泥和污垢还有剥离作用。异噻唑啉酮的氯化物(5-氯-2-甲基-4-异噻唑啉-3-酮

28、和二甲基-4-异噻唑啉-3-酮的混合物),美国ROHM&KathonWT,国内上海医科大学最近开发的SM-103,是同样的上述两种异噻唑啉酮混合物。异噻唑啉酮的氯化物特点是广普高效、使用PH宽、不会产生泡沫、与水处理剂相溶性、杀菌快速,而且易穿透生物粘泥而有效地控制固着的微生物。异噻唑啉酮的杀菌机理:它能快速地进入细胞与蛋白质互相作用,由于抑制了呼吸和ATP(三磷酸腺贰)的合成,致使代谢紊乱,最重要的是酶逐渐地被氧化,导致细胞死亡。非氧化性杀菌剂由于价格较贵,并不是每天都要投加的,一般在气温较高的季节5-10月份每两周投加一次,其它月份每四周投加一次,每次投加浓度50-100ppm,在

29、每次投加时,12-24小时内系统不要排污了,目的是充分利用药效,12-24小时内系统内被杀死的微生物以及剥离下来的生物粘泥,水中浊度明显增高,此时应加大排污,尽快地将系统内的水进行置换,以保持循环水浊度<10mg/L。2、阻垢缓蚀(1)阻垢剂及其阻垢作用在循环水中投加聚羧酸类及其共聚物或有机膦酸盐类阻垢剂就可以抑制水中的CaCO3晶体的成长,避免在换热器金属表面形成垢层。阻垢剂的作用机理,一般有以下两种说法:一种说法是分散作用聚羧酸及其共聚物中羧酸基团COO是带负电荷的,与水中CaCO3微晶体碰撞时,首先发生物理的和化学的吸附过程,吸附的结果使微晶体表面形成了一个双电层,当一个羧酸基团负

30、离子和两个以上的CaCO3等微晶体吸附时,可以使这些微晶体带上相同的电荷,它们之间互相排斥作用,这就阻止了晶体的增长,呈分散状态而悬浮在水中,避免垢的形成。第二种说法是晶格歪曲作用聚羧酸及其共聚物中的羧酸基团对Ca2+具有螯合作用,在CaCO3微晶体成长过程起了干扰作用,破坏了CaCO3晶体不能严格按正常排列生长,使CaCO3晶格发生畸变或者致使CaCO3晶格歪曲这样所形成的垢就成为非结晶的疏松软垢,容易被水流冲走,有机膦酸盐的阻垢作用亦是如此。(2)缓蚀剂及其缓蚀机理不论是采用什么类型的缓蚀剂,其作用是使在清洁的(或称活化的)金属表面上生成一层保护膜,有的是氧化膜,如铬酸盐、钼酸盐等,有的是

31、沉积膜,如磷酸盐。有机膦酸盐、锌盐和苯并三氮唑等。氧化膜型缓蚀剂与金属表面接触进行氧化而在金属表面形成一层防蚀保护膜,这层保护膜致密,膜度(30-200A),与金属结合牢固,它能阻碍水中溶解氧扩散到金属表面,从而抑制腐蚀反应的进行。使用铬酸盐时,一般认为是它能氧化金属铁而形成r-Fe2O3;另一种说法是铬酸盐能在金属表面形成一种氧的吸附层,如:Cr2O7+8H+Fe2Cr3+4H2O+O2·OFe式中O2·OFe即为氧化吸附膜。沉淀膜型缓蚀剂(如聚磷酸盐)与水中的金属离子(如钙或其它两价金属离子)形成一个带正电荷的洛合离子,以胶溶状态存在于水中,这种胶溶状态带正电荷的聚膦酸

32、钙洛合离子到达金属表面时,可再与Fe3+相洛合生成以聚膦酸钙铁为主要成份的洛合离子沉积在金属表面,形成保护膜,这种沉淀膜型的缓蚀作用必须具备一定浓度的两价金属离子、溶解氧和活化的金属表面等三个必要条件。沉淀膜型锌盐缓蚀剂与水中氢氧根生成Zn(OH)2的保护膜,成膜快,但不牢固,因此不能单独使用,只有与聚磷酸盐(铬酸盐、有机磷酸盐、多元硫酸酯)复合作用,起到增效作用,利用它成膜快的特性与其它缓蚀剂成膜密实耐久的特性,形成协助增效作用。有机磷酸盐(如HEDP、ATMP、EDTMP等)以及多元醇膦酸酯,不仅具有阻垢作用,同时也起缓蚀作用,也是一种沉淀膜型缓蚀剂,它的作用机理与聚磷酸盐类似,但比聚磷酸

33、盐稳定,成膜更为牢固。杂环化合物巯基苯并噻唑、苯并三氮唑和甲苯三氮唑都是对铜及其合金的缓蚀剂,有资料报导这类化合物对防止钢铁点蚀具有好的效果。(3)缓蚀阻垢配方的选择根据补充水水质、换热设备结构、材质以及换热设备的操作参数(流速、热负荷、热强度)等因素来选择缓蚀阻垢配方,当没有经验,也没有同类工厂的运行经验可参考时,最好是通过试验来选择配方。下面简要介绍缓蚀阻垢配方的发展过程: 铬酸盐系:铬系配方的历史比较悠久,铬酸盐作缓蚀剂的来历是1923年,1924年用于制冷冷却系统,由于铬酸盐有毒,有人开始研究低铬、超低铬配方。到40年代末期出现了铬酸盐/磷酸盐和铬/磷/锌配方,到了70年代初期,美国第

34、一次环境制止铬酸盐排放到天然水体的法规,70年代中期世界一致公认铬是致癌物质,这个时期之后使用铬系配方大大减少。铬系水稳剂的缓蚀效果是非常好的,使用时要控制PH值在6.5左右。 磷系配方:50年代末期在美国出现使用无机磷/聚合物及磷/锌/聚合物配方,无机磷主要是六偏磷酸钠,聚合物主要是丙烯酸的聚合物。磷在水中由于各种因素要分解成正磷,正磷与水中钙结合生成磷酸钙沉积;磷酸钙的容度积Ksp比碳酸钙还小许多,因此必须要有聚合物来防止磷酸钙沉积,同时聚合物也是很好的碳酸钙的分散剂。 无机磷/聚合物或无机磷/锌/聚合物配方,适用于水中Ca硬较低(100-200ppm以CaCO3计)的水中,而且无机磷的投

35、加量一般在50ppm左右,因此为了提高浓缩倍数(Ca硬>200ppm以CaCO3计),降低无机磷的使用量,于是到60年代出现了有机磷酸盐(HEDP、ATMP、EDTMP等),70年代初期配方为聚磷/有机膦/聚合物,无机磷的用量控制到10ppm左右,PH值也放宽到8左右,我国引进的大化肥厂的配方均属于这一类配方,但效果不是很理想。 多元醇磷酸酯/锌/聚合物,配方中取消了无机磷,PH控制在8.3以下,只要管理得好,效果也还是比较好得,这是美国Naclo公司典型得配方。到了70年代中期,一些国家提出了禁磷、限磷的问题,目的是为了防止水域富营养化,所以在合成洗涤剂出现了磷的代用品,Naclo公司

36、的多元醇磷酸酯/锌/聚合物也是属于这一范畴。与此同时也出现了全有机配方(all-organic cooling water mograms),这一类配方的主要成份是有机磷酸盐/聚合物/杂环化合物,各国的水处理公司在全有机配方中的每种成份上大做文章,80年代各国水处理工作者们所致力研究开发的,如2-膦酸基-丁烷-1,2,4-三羧基(PBTC),这是个分子中有三个羧酸基(-COOH)和一个膦酸基(-PO3H2),因此具有缓蚀阻垢性能,又如羧基膦酸基羧酸(HPA)也是一种优良的缓蚀阻垢剂。在聚合物方面出现了许多共聚物,如丙烯酸/丙烯酸羟丙酯共聚物丙烯酸/马来酸共聚物丙烯酸/羧醛磺酸醛醚共聚物磺化苯乙

37、烯/马来酸共聚物磺化苯乙烯/丙烯酸共聚物在杂环化合物方面如:巯基苯并噻唑(MBT)、苯并三氮唑(BT)、甲苯三氮唑(TT)。以上这些水稳剂的发展,不仅适合于环境的要求,而且适合于高硬度、高碱度、高PH、高浓缩倍数的运行,另外操作简单,不需加酸调节PH值。五、运行管理问题一个设计完善的循环水系统,在化学处理配方确定之后,科学的管理是至关重要的,“三分药剂,七分管理”这句话是经验教训的总结,一个循环水场凡是管理得不好打的,其处理效果不可能是好的,凡是加强了管理,其处理效果一定是好的。如何搞好循环水的科学管理,下面谈几点看法:1、领导重视这是最重要的,是第一位的,循环水处理的不好,影响了长周期、满负

38、荷的生产,影响了工厂的经济效益,只要工厂的厂长们以及总工程师认识到水处理的重要性,必定是重视的,水处理在工厂里属于辅助部门,一般来讲工厂的厂长和总工程师所关心的是工艺生产车间,关心的产品质量和产量,关心的是经济效益,这是可以理解的,如果忽略了辅助部门,等出了问题再来抓,这时已经晚了。十三套引进大化肥在投产的最初几年的经验教训值得借鉴,当初工厂的领导们眼睛只盯着四大机组,盯着出合成氨、出尿素,可是合成氨、尿素还没有出来,或者刚出来不久,换热器出问题了,被迫停产,换热器出现的问题各种各样,关键问题是领导不够重视,举一个我终身难忘的例子,有一个大化肥厂在合成氨和尿素车间的操作工都是要求高中或中转毕业的,经过培训才能上岗位操作,而循环水岗位是“五工”,就是农民工、合同工、外包工等,这样的工人素质怎么能搞好循环水处理呢?当时出现的问题也是五花八门,关键是领导的认识,领导的重视,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论