多元函数的极值复习_第1页
多元函数的极值复习_第2页
多元函数的极值复习_第3页
多元函数的极值复习_第4页
多元函数的极值复习_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、§6.6 多元函数的极值求具有二阶连续偏导数的二元函数的极值的步骤如下:求出函数的所有驻点由解得的驻点; 根据极值的充分条件判定驻点是否为极值点对每一个驻点,求出二阶偏导数在该点的值1°当时,在点取得极值,时为极大值,时为极小值;2°当时,在点不取极值; 3°当时,不能确定,需另作讨论。习题六(A)22求下列函数的极值,并判断是极大值还是极小值:(1),;解:求驻点由解得所以, , , 为的驻点;求二阶偏导数不取极值不取极值不取极值是极值,时为极大值,时为极小值(2)解:求驻点由解得,所以为的驻点;求二阶偏导数为极小值24某工厂生产甲、乙两种产品,产量各

2、为x、y,其成本函数为。由市场调查得知,甲、乙两种产品的单价与产量分别有如下关系:。试求甲、乙两种产品产量各为多少时总利润最大?并求出最大利润。解:设L表示该工厂的利润,则。解方程组,得唯一驻点(4,2)。根据问题的实际意义,L必可取得最大值, 因此这个最大值在(4,2)处取得。于是该工厂的最大利润为(元)。25某厂家生产某种产品的成本是每件2元,另外每月再花广告费A元,则每月的销售量为,其中P为产品销售价格。求最合理的P和A值,使得工厂的纯利润最大。解:设L表示该工厂的利润,则L=x(P-2)-A。解方程组,得,得唯一驻点(12,1000 ln3)。根据问题的实际意义,L必可取得最大值, 因

3、此这个最大值在(12,1000 ln3)处取得。故当P=12,A=1000 ln3时工厂的纯利润最大。求函数在条件的极值的拉格朗日乘数法的基本步骤为:(1) 构造拉格朗日函数,其中为某一常数;(2) 由方程组解出,其中驻点就是所求条件极值的可能的极值点。注:拉格朗日乘数法只给出函数取极值的必要条件,因此按照这种方法求出来的点是否为极值点,还需要加以讨论。不过在实际问题中,往往可以根据问题本身的性质来判定所求的点是不是极值点。习题六(A)26某工厂生产A、B两种产品,A产品每件纯利6元,B产品每件纯利4元,制造x件产品与y件产品的成本函数为,而该厂每日的制造预算是20 000元。问应如何分配A、B两种产品的生产,使利润最大?解一:设该厂每日生产x件A产品、y件B产品。设L表示该工厂的利润,则。因此问题就是在条件,即下,求函数的最大值。作拉格朗日函数,求L的驻点,即解方程组,得唯一驻点(1500,8125)所以这个驻点就是所求的解。即该厂每日生产1500件A产品、8125件B产品时利润最大。最大利润为(元)。解二:设该厂每日生产x件A产品、y件B产品。设L表示该工厂的利润,则。因此问题就是在条件,即下,求函数的最大值。化为无条件极值求解。把代入得,即令,得唯一驻点。根据问题的实际意义,L必可取得最大值,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论