版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、小学数学简便运算和巧算一、数的加减乘除有时可以运用运算定律、性质、或数量间的特殊关系进性较快的运算这就是简便运算.(一)其方法有:一:利用运算定律、性质或法那么.(1)加法:交换律,a+b=b+a,结合律,(a+b)+c=a+(b+c).(2)减法运算性质:a-(b+c)=a-b-c,a-(b-c)=a-b+c,a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a.(3):乘法:利用运算定律、性质或法那么.交换律,axb=bxa,结合律,(axb)Xc=aX(bXc),分配率,(a+b)xc=axc+bxc,(a-b)xc=axc-bxc.(4)除法运算性质:a+(bxc)=a+b+
2、c,a+(b+c)=a+bxc,a+b+c=a+c+b,(a+b)+c=a+c+b+c,(a-b)+c=a+c-b+c.前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的.具规律是同级运算中,加号或乘号后面加上或去掉括号,.后面数值的运算符号不变.例1:283+52+117+148=(283+117)+(52+48)=400+200=600(运用加法交换律和结合律).减号或除号后面加上或去掉括号,后面数值的运算符号要改变.例2:657-263-257=657-257-263=400-263=147.(运用减法性质,相当力口法交换律.)例3:195-(95+24)=195-95-24=
3、100-24=76(运用减法性质)例4;150-(100-42)=150-100+42=50+42=92.(同上)例5:(0.75+125)X8=0.75X8+125X8=6+1000=1006.(运用乘法分配律)例6:(125-0.25)X8=125X8-0.25X8=1000-2=998.(同上)例7:(1.125-0.75)+0.25=1.125+0.25-0.75+0.25=4.5-3=1.5.(运用除法性质)例8:(450+81)+9=450+9+81+9=50+9=59.(同上,相当乘法分配律)例9:375+(125+0.5)=375+125*0.5=3*0.5=1.5.(运用除法
4、性质)例10:4.2+(006X0.35)=4.2+0.6+0.35=7+0.35=20.(同上)例11:12X125X0.25X8=(125X8)X(12X0.25)=1000X3=3000(运用乘法交换律和结合律)例12:(175+45+55+27)-75=175-75+(45+55)+27=100+100+27=227(运用加法性质和结合律)例13:(48X25X3)+8=48+8X25X3=6X25X3=450.(运用除法性质,相当加法性质)(5)和、差、积、商不变的规律.1:和不变:如果a+b=c,那么,(a+d)+(b-d)=c,2:差不变:如果a-b=c,那么,(a+d)-(b+
5、d)=c,(a-d)-(b-d)=c3:积不变:如果a*b=c,那么,(a*d)*(b+d)=c,4:商不变:如果a+b=c,那么,(a*d)+(b*d)=c,(a+d)+(b+d)=c.例14:3.48+0.98=(3.48-0.02)+(0.98+0.02)=3.46+1=4.46(和不变)例15:3576-2997=(3576+3)-(2997+3)=3579-3000=579(差不变)例16:74.6X6.4+7.46X36=7.46X64+7.46X36=7.46X(64+36)=7.46义100=746.(积不变和分配律)例17:12.25+0.25=(12.25*4)+(0.25
6、*4)=49+1=49.(商不变).二:拆数法:(1)凑整法,19999+1999+198+6=(19999+1)+(1999+1)+(198+2)+2=22202(2)利用规律,7.5X2.3+1.9X2.5-2.5X0.4=7.5X(0.4+1.9)+1.9X2.5-2.5X0.4=7.50.4+7.51.9+1.92.5-2.50.4=0.4(7.5-2.5)+1.9(7.5+2.5)=2+19=21.2.199220052005-200519921992=19922005(10000+1)-20051992(10000+1)=0三:禾I用基准数:2072+2052+2062+2042+
7、2083=(2062x5)+10-10-20+21=10311四:改变顺序,重新组合.(1) :(215+357+429+581-(205+347+419+571=215+357+429+581-205-347-419-571=(215-205)+(429-419)+(357-347)+(581-571)=40(2) :(378X5X25)X(4X0.8+3.78)=378X5X25X4X0.8+3.78=(378+3.78)X(25X4)x(5X0.8)=100x100x4=40000五:1:求等差连续自然数的和.当加数个数为奇数时,有:和=中间数x个数.当加数个数为偶数时,有:和=(首+尾
8、)x个数的一半.(1):3+6+9+12+15=9*5=45,(2):1+2+3+4+10=(1+10)*10+2=55.2:求分数用的和.由于1/n-1/n+1=1/n(n+1),1/n+1/n+1=n+(n+1)/n(n+1).所以:(1):1/42+1/56+1/72+1/90+1/110=1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11=1/6-1/11=5/66(2) :5/6-7/12+9/20-11/30+13/42-15/56+.+41/400-43/460=(1/2+1/3)-(1/3+1/4)+(1/4+1/5)-(1/5+1/6)+(1
9、/6+1/7)-(1/7+1/8)oooooo+(1/20+1/21)-(1/21+1/22)=1/2-1/22=5/113:变形约分法.求:(1.2+2.3+3.4+4.5)+(12+23+34+49的值.由于分母各项是分子各项的10倍.所以有:原式=0.1六:设数法:求(1+0.23+0.34)*(0.23+0.34+0.65)-(1+0.23+0.34+0.65)*(0.23+0.34)的值.设a=0.23+0.34.b=0.23+0.34+0.65.原式=(1+a)*b-(1+b)*a=b+ab-a-ab=b-a=(0.23+0.34+0.65)-(0.23+0.34)=0.65.(二
10、):巧算的方法:除运用上面所说的简便方法外,最重要的是抓住题目(特别是应用题)中的数量关系,充分利用逻辑推理,变解法不明为解法明确,把一般问题转化为特殊问题,以小见大,以少见多,以简驭繁.从而到达巧算的目的.一:利用数的整除特征和某些特殊规律.特殊问题来求解.重在一个“巧.(1):一个三位数连续写两次得到的六位数一定能被7、11、13整除.为什麽解;六位数abcabc=abcx1000+abc=abcX1001.1001=7x13X11.六位数abcabc必能被7、11、13整除.(2):六位数865abe能被3、4、5整除,当这个数最小时,a,b,c各是数字几解:由于该数能被4,5整除,b,
11、c必都是零,要使该数能被3整除,它各位数字和应能被3整除,a只能是2.所以a,b,c分别是2,0,0.(3):化简:(1+2+3+4+5+6+7+8+7+6+5+4+3+2+1+(888888X888888)=8X8+(888888乂888888)=1+(111111X111111)=1/12345654321.(由于:11*11=121,111*111=12321,1111*1111=1234321,所以.)二:估算法:求:a=1+(1/1992+1/1993+1/1994+1/2003)的整数局部.解:用一般通分求他得值太繁琐,可巧用“放缩法估算.假定除数局部各加数都是1/1992,那么a
12、=1+(12/1992)=166.假设除数局部各加数都是1/2003,贝Ua=1+(12/2003)=166+11/12所以它的整数局部是166.三:正难那么反法.直接求解困难时,换个角度从反面求解.(1):除了本身,合数7854321的最大因数是多少一般想法是将其分解质因数求之,但这个数很大,做起来很繁琐.巧解:先求它的最小因数,再通过“除求它的最大因数.由于该数各位数字和能被3整除,所以这个数的最小因数是3,最大因数是:7854321+3=261807.(2):某厂人数在90-110之间,做工间操排队时,站3列正好;站5列少2人;站7列少4人,这厂有多少人解:按所给数值正面求解很难,假设换
13、个角度从反面做,把它转化为:该厂工人站3列多3人;站5列多3人;站7列多3人求这厂人数的问题.即求比3,5,7的最小公倍数多3的数是多少.3,5,7=105,105+3=108人.这厂有108人.四:慎密的逻辑推理:(1):幼儿园的小朋友分饼干,每人分5块,那么差27块.每人分4块,正好分完.这个幼儿园有多少小朋友分了多少饼干解:一般用方程法:设有x个小朋友.5x-4x=27,x=27.饼干为:27X4=108块.巧解:每人分4块,正好分完,每人多分一块(5块)差27块,说明小朋友为:27+1=27个,饼干为:27X4=108块(2):某商店有两个柜台,甲台比乙台的磁带少120盒,各卖出164
14、盒后,乙剩下的是甲剩下的3倍,求原来两台各有多少盒磁带一般用方程法:设甲剩x台,乙剩3x台.(3x+164)-(x+164)=120,x=60,3x=180.甲原有:60+164=224盒,乙原有180+164=344盒.推理巧解:由于卖出的数量相等,所以卖出后甲仍比乙少120盒,乙是甲的3倍,这就转化为差倍问题了.120+(3-1)=60.60X3=180.甲原有:60+164=224盒,乙原有:180+164=344盒(3):甲乙两人进行骑车比赛,当甲骑到全程的7/8时,乙骑到全案程6/7,这时两人相距140米.如果两人的速度不变,当甲骑到终点时,两人相距多少解:一般方法:7/8:6/7=
15、49:48.140+(7/8-6/7)=7840,7840:x=49:48,x=76807840-7680=160米推理巧解思路:直接求甲到终点时比乙多走多少米.甲走7/8时比乙多走140米甲走1/8时比乙多走140/7=20米.所以甲走8/8(全程)时,比乙多走140+20=160米(4):求分母为40以内所有自然数的真分数的和.1/2+(1/3+2/3)+(1/4+2/4+3/4)+(1/5+2/5+3/5+4/5)+.+39/40解:用通分法求和很繁琐.通过分析数量关系可知,每个加数乘以2,可顺次得到1、2、3、4/.39.所以,(20X39)+2=390即为所求.(5):一正方形,当竖
16、边减少20%横边增加2米时,得到的长方形面积与原正方形面积相等,求原正方形面积.解:一般思路:由于正方形面积=边长X边长.所以应先求边长.用方程解:设正方形边长为一个单位长度,那么面积为一个单位面积.长方形的宽为:1X(1-20%)=80%t单位长度,长为:一个单位面积+80%"单位长度=1.25个单位长度,与2米对应的单位长度为:1.25-1=0.25个单位长度.所以正方形边长(一个单位长度)=2+0.25=8米,正方形面积=8x8=64平方米.很繁琐.巧解思路:因竖边减少20%在原图形上减少的面积与后来因横边增加2米,增加的面积相等.所以设原正方形边长为x米,那么:20%xXx=
17、80%xX2x=8米.正方形面积=8X8=64平方米.(6):某班有40名学生,考数学时有2人缺考,这38人平均分数是89,这2名学生补考后,两人的平均成绩比全班40人的平均成绩多9.5分,这两人的平均成绩是多少解:一般从求平均数的共识考虑,用方程解:设这两人的平均成绩为x,那么:x-(89*38+2x)+40=9.5,x=99.推理巧解(抓住平均就是移多补少的实质).这两人的平均分数比全班平均分数多9.5分,把9.5X2=19补给38名学生,每人增加0.5分,所以这两人平均分数为:89+0.5+9.5=99.五:注意一般解法的特殊形式:(1):求平均数的一般方法:公式法,平均数=总数量+总份
18、数.但当份数相等时,巧解法:平均数=(第一份数量+第二份数量+000000+第n份数量)+份数.如:某人晨练,第一个5分钟的速度是100米/分,第二个5分钟的速度是110米/分,求他这10分钟内的平均速度一般解法:平均数=(100X5+110X5)+(5+5)=105米/分由于“份数相同,可巧解:平均数=(100+110)+2=105米/分.(2):甲(带着一条狗)乙两人同时从相距100千米的两地出发相向而行,甲速度为6千米/小时,乙速为4千米/小时,狗速为10千米/小时,狗碰到乙时就掉头朝甲走来,碰到甲时又朝乙跑去.直到甲乙两人相遇.这狗走了多少米解:假设分段求出狗与甲、与乙、与甲、与乙.相
19、遇时走的路程,再加起来是很困难的.一般巧解方法是:从整体考虑,狗走的时间就是甲乙相遇用的时间,所以狗走的时间=100+(4+6)=10小时,狗走的路程=10X10=100千米.这还不算巧,更巧的方法是:从题意可知:甲乙速度和二狗速,并且走的时间相同,所以,甲乙共走的路程就=狗走的路程=100千米.总的来看,“巧解就是在一题多解情况下的最正确选择.(三)总练习题(用简便方法计算1-16题,用多种方法计算17-30题,并指出最巧方法.1730题只给出巧解答案.)(1)925-28-72+75(2)(64X125)+(16X28)(3)12.348+25(4)55X55/56(5)3.8+3.75+
20、3.85+3.75(6)123454321+(55555X55555)(11X11=121,111X111=12321,1111X1111=1234321.)(7)18X5/7-5X4/7(8)999X222+333X334(9)(4.8X7.5X8.1)+(2.4X2.7+4)(10)8.3X64+1.7X65(11)12.5*(36-7.2)+3.6(12)43*11.8+860*0.91(13)(9+2/7+7+2/9)+(5/7+5/9)(14)1/2+1/6+1/12+1/20+1/30(15)(1+1/2+1/3+.+1/1999)X(1/2+1/3+1/4+000000+1/20
21、00)-(1+1/2+1/3+.+1/2000)乂(1/2+1/3+1/4.+1/1999)(15)4327-98(16)求:5+10+15+20+.+200的和(17)比拟9/10和11/12的大小.(提示:有比拟分子、比拟分母、比拟与1的差、比拟它们的倒数、变成整数比拟和用真分数特点比拟等方法.但最巧的比拟方法是用“规律比拟:分子分母都相差1时,分母大的分数大.)(18)比拟:2222221/2222223和3333331/3333334的大小.(提示:巧法是先比拟他们与1的差.)(19)某厂工人植树,假设每人植5棵,剩50棵,假设每人植6棵,差40棵.这厂有多少工人他们共植多少棵树巧解:
22、由题意可知,每人多种1棵,就多种50+40=90棵,所以这场工人有90+1=90人,共植5*90+50=500棵.(20)张老师用216元买钢笔奖励学生,假设每支廉价1元,可多买3支,钢笔原价是多少巧解:由于总价=单价X数量,所以把216分解成两个数相乘有2和108、3和72、4和54、6和36、8和27、9和24.根据题意,从后两组数可知每支笔原价是9元.(21)王华和李明在银行都有存款,原来王比李少1/6,每人捐出20元后,李比王多25%两人原来存款各是多少巧解:由王比李少1/6可知;李存款是他两存款差的6倍,由李比王多25那么知,捐出20元后李存款是他两存款差的5倍,捐款前后“差不变,李
23、捐出20元后,自己的钱变成“差的5倍,所以“差是20元.李原有钱为20*6=120元.王原有钱120-20=100元.(22)甲乙两消防队共有338人,从甲队调出1/3,从乙队调出1/7的和是78人,甲乙两队各有多少人巧解:假设甲乙调出的人数都扩大到3倍,那么共调出78X3=234,原消防队只剩乙队的4/7,所以原乙消防队有:(338-234)+4/7=182人,原甲队有338-182=156人.(23)猴吃桃,第一天吃了全部的1/9,第二天吃余下的1/8,第三天吃又余下的1/7.第八天吃余下的1/2,第九天吃了一个正好吃完,原有桃多少个巧解:从题意可知:每天都吃了总数的1/9,(第二天吃8/
24、9X1/8=1/9,第三天吃7/9*1/7=1/9.),所以桃子总数为:1+1/9=9个.(24)妈妈给上衣缝纽扣,假设每天缝15件,比规定日期晚2天,每天缝18件,就可提前3天,这批上衣是多少件巧解:按工程问题做:(2+3)+(1/15-1/18)=450件.(25):一架飞机的燃料最多可用6小时,飞机去时顺风,速度为1500千米/小时,返回时逆风,速度为1200千米/小时,飞机最多飞出多远就要往回飞巧解:按工程问题(相遇问题)思路来解答.按题意转化为往返多少千米用6小时.6+(1/1500+1/1200)=4000千米.(26):某人卖商品,第一天按11元/个的利润卖出10个,第二天是五一
25、,按5元/个的利润卖出11个,两天卖出的总价(营业总额)相同,求该商品的进价巧解:由于总价=(利J润+进价)x个数.第一天利润为11X10=110元,第二天假设卖10个,利润为5X10=50元,总额少60元,多卖出一个,利润仅为5X11=55元,第二天少得利润60-5=55元,所以,一件商品的进价为55元.(27) 一农民死前立遗嘱:要把17头牛分给三个儿子,大儿子得1/2,二儿子得1/3,三儿子得1/9,(不得杀或卖)三个儿子不会分,你应如何分巧解:17不是2、3、9的倍数,不能安分率分配,应把三个分率看成分牛时每人得的份数.1/2:1/3:1/9=9:6:2,所以:17+(9+6+2)=1
26、头,三个儿子分别应分:9头,6头,2头.另一巧解方法是:三个分率的分母最小公倍数是18,可以18头牛为单位“1,进行分配.18X1/2=9,18X1/3=6,18乂1/9=2(28) 学校买进一批白色、彩色粉笔,白色是彩色的3倍,开学后平均每周用36盒白色的、8盒彩色的.几周后,白色的用完,彩色的还剩36盒,原来购进白、彩粉笔各多少盒巧解:由于白是彩的3倍,假设每周按比例白36盒,彩12盒使用,刖同时用完,现在每周少用彩笔12-8=4盒,可见用了36+4=9周,所以白色粉笔为:36X9=324盒,彩色粉笔为:8X9+36=108盒.(29)前六(2),假设甲、乙速度不变,狗速变为15千米/小时
27、,甲乙两人相遇时,狗跑了多少千米巧解:由于狗与两人运动时间相同,所以,路程和时间成正比.x/100=15/10,x=150千米.(30)某蓄水池长、宽、深分别为10米、8米、3米.一进水管以0.6小时使水深达0.3米的速度往池内放水,多少时间可放满水池巧解:思路:水深到达3米,就满池了.由于放水速度不变,所以水深与时间成正比,3/0.3=x/0.6x=6小时.或3+(0.3+0.6)=6小时.同学们:快来看博客上的文章吧,它有助于你分析问题和解决问题水平的提升,大大提升你学习新知识、复习旧知识的效率.老师们:快来看吧,看后会使你增加一些引导学生“复习知识的方法,从而提升复习效率.文中不妥之处,
28、诚请指正.谢谢.加法类似):交换律,a*b=b*a,结合律,(a*b)*c=a*(b*c),分酉己率,(a+b)xc=ac+bc,(a-b)Xc=ac-bc.(4)除法运算性质:(与减法类似),a+(bXc)=a+b+c,a+(b+c)=a+bxc,a+b+c=a+c+b,(a+b)c=ac+bc,(a-b)c=ac-bc.前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的.其规律是同级运算中,加号或乘号后面加上或去掉括号,.后面数值的运算符号不变.例1:283+52+117+148=283+117+52+48=400+200=60.运用加法交换律和结合律.减号或除号后面加上或去掉括
29、号,后面数值的运算符号要改变.运用减法性质,相当加法交运用减法性质例2:657-263-257=657-257-263=400-263=147.换律.)例3:195-(95+24)=195-95-24=100-24=76例4;150-(100-42)=150-100+42=50+42=92.(同上)例5:(0.75+125)X8=0.75X8+125X8=6+1000=1006.(运用乘法分配律)例6:(125-0.25)X8=125X8-0.25X8=1000-2=998.(同上)例7:(1.125-0.75)+0.25=1.125+0.25-0.75+0.25=4.5-3=1.5.(运用除
30、法性质)例8:(450+81)+9=450+9+81+9=50+9=59.(同上,相当乘法分配律)例9:375+(125+0.5)=375+125*0.5=3*0.5=1.5.(运用除法性质)例10:4.2+(006X0.35)=4.2+0.6+0.35=7+0.35=20.(同上)例11:12X125X0.25X8=(125X8)X(12X0.25)=1000X3=3000.(运用乘法交换律和结合律)例12:(175+45+55+27)-75=175-75+(45+55)+27=100+100+27=227.(运用加法性质和结合律)例13:(48X25X3)+8=48+8X25X3=6X25
31、X3=450.(运用除法性质,相当加法性质)(5)和、差、积、商不变的规律.1:和不变:如果a+b=c,那么,(a+d)+(b-d)=c,2:差不变:如果a-b=c,那么,(a+d)-(b+d)=c,(a-d)-(b-d)=c3:积不变:如果a*b=c,那么,(a*d)*(b+d)=c,4:商不变:如果a+b=c,那么,(a*d)+(b*d)=c,(a+d)+(b+d)=c.例14:3.48+0.98=(3.48-0.02)+(0.98+0.02)=3.46+1=4.46,.(和不变)例15:3576-2997=(3576+3)-(2997+3)=3579-3000=579.(差不变)例16:
32、74.6X6.4+7.46X36=7.46X64+7.46X36=7.46X(64+36)=7.46义100=746.(积不变和分配律)例17:12.25+0.25=(12.25*4)+(0.25*4)=49+1=49.(商不变).二:拆数法:(1)凑整法,19999+1999+198+6=(19999+1)+(1999+1)+(198+2)+2=22202(2)利用规律,7.5X2.3+1.9X2.5-2.5X0.4=7.5X(0.4+1.9)+1.9X2.5-2.5义0.4=7.5X0.4+7.5X1.9+1.9X2.5-2.5X0.4=0.4X(7.5-2.5)+1.9X(7.5+2.5
33、)=2+19=21.2. 1992X20052005-2005X19921992=1992X2005X(10000+1)-2005X1992X(10000+1)=0三:禾I用基准数:2072+2052+2062+2042+2083=(2062x5)+10-10-20+21=10311四:改变顺序,重新组合.(1) :(215+357+429+581-(205+347+419+571=215+357+429+581-205-347-419-571=(215-205)+(429-419)+(357-347)+(581-571)=40(2) :(378X5X25)X(4X0.8+3.78)=378X
34、5X25X4X0.8+3.78=(378+3.78)X(25X4)x(5乂0.8)=100x100x4=40000五:1:求等差连续自然数的和.当加数个数为奇数时,有:和=中间数x个数.当加数个数为偶数时,有:和=(首+尾)x个数的一半.(1):3+6+9+12+15=9*5=45,(2):1+2+3+4+10=(1+10)*10+2=55.2:求分数用的和.由于1/n-1/n+1=1/n(n+1),1/n+1/n+1=n+(n+1)/n(n+1).所以:(1):1/42+1/56+1/72+1/90+1/110=1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/
35、11=1/6-1/11=5/66(2):5/6-7/12+9/20-11/30+13/42-15/56+.0+41/400-43/460=(1/2+1/3)-(1/3+1/4)+(1/4+1/5)-(1/5+1/6)+(1/6+1/7)-(1/7+1/8)oooooo+(1/20+1/21)-(1/21+1/22)=1/2-1/22=5/113:变形约分法.求:(1.2+2.3+3.4+4.5)+(12+23+34+45的值.由于分母各项是分子各项的10倍.所以有:原式=0.1六:设数法:求(1+0.23+0.34)*(0.23+0.34+0.65)-(1+0.23+0.34+0.65)*(0
36、.23+0.34)的值.设a=0.23+0.34.b=0.23+0.34+0.65.原式=(1+a)*b-(1+b)*a=b+ab-a-ab=b-a=(0.23+0.34+0.65)-(0.23+0.34)=0.65.(二):巧算的方法:除运用上面所说的简便方法外,最重要的是抓住题目(特别是应用题)中的数量关系,充分利用逻辑推理,变解法不明为解法明确,把一般问题转化为特殊问题,以小见大,以少见多,以简驭繁.从而到达巧算的目的.一:利用数的整除特征和某些特殊规律.特殊问题来求解.重在一个“巧.(1):一个三位数连续写两次得到的六位数一定能被7、11、13整除.为什麽解;六位数abcabc=abc
37、x1000+abc=abcX1001.1001=7X13X11.六位数abcabc必能被7、11、13整除.(2):六位数865abe能被3、4、5整除,当这个数最小时,a,b,c各是数字几解:由于该数能被4,5整除,b,c必都是零,要使该数能被3整除,它各位数字和应能被3整除,a只能是2.所以a,b,c分别是2,0,0.(3):化简:(1+2+3+4+5+6+7+8+7+6+5+4+3+2+1+(888888X888888)=8X8+(888888乂888888)=1+(111111X111111)=1/12345654321.(由于:11*11=121,111*111=12321,1111
38、*1111=1234321,所以.)二:估算法:求:a=1+(1/1992+1/1993+1/1994+1/2003)的整数局部.解:用一般通分求他得值太繁琐,可巧用“放缩法估算.假定除数局部各加数都是1/1992,那么a=1+(12/1992)=166.假设除数局部各加数都是1/2003,那么a=1+(12/2003)=166+11/12所以它的整数局部是166.三:正难那么反法.直接求解困难时,换个角度从反面求解.(1):除了本身,合数7854321的最大因数是多少一般想法是将其分解质因数求之,但这个数很大,做起来很繁琐.巧解:先求它的最小因数,再通过“除求它的最大因数.由于该数各位数字和
39、能被3整除,所以这个数的最小因数是3,最大因数是:7854321+3=261807.(2):某厂人数在90-110之间,做工间操排队时,站3列正好;站5列少2人;站7列少4人,这厂有多少人解:按所给数值正面求解很难,假设换个角度从反面做,把它转化为:该厂工人站3列多3人;站5列多3人;站7列多3人求这厂人数的问题.即求比3,5,7的最小公倍数多3的数是多少.3,5,7=105,105+3=108人.这厂有108人.四:慎密的逻辑推理:(1):幼儿园的小朋友分饼干,每人分5块,那么差27块.每人分4块,正好分完.这个幼儿园有多少小朋友分了多少饼干解:一般用方程法:设有x个小朋友.5x-4x=27
40、,x=27.饼干为:27X4=108块.巧解:每人分4块,正好分完,每人多分一块(5块)差27块,说明小朋友为:27+1=27个,饼干为:27X4=108块(2):某商店有两个柜台,甲台比乙台的磁带少120盒,各卖出164盒后,乙剩下的是甲剩下的3倍,求原来两台各有多少盒磁带一般用方程法:设甲剩x台,乙剩3x台.(3x+164)-(x+164)=120,x=60,3x=180.甲原有:60+164=224盒,乙原有180+164=344盒.推理巧解:由于卖出的数量相等,所以卖出后甲仍比乙少120盒,乙是甲的3倍,这就转化为差倍问题了.120+(3-1)=60.60X3=180.甲原有:60+1
41、64=224盒,乙原有:180+164=344盒(3):甲乙两人进行骑车比赛,当甲骑到全程的7/8时,乙骑到全案程6/7,这时两人相距140米.如果两人的速度不变,当甲骑到终点时,两人相距多少解:一般方法:7/8:6/7=49:48.140+(7/8-6/7)=7840,7840:x=49:48,x=76807840-7680=160米推理巧解思路:直接求甲到终点时比乙多走多少米.甲走7/8时比乙多走140米甲走1/8时比乙多走140/7=20米.所以甲走8/8(全程)时,比乙多走140+20=160米(4):求分母为40以内所有自然数的真分数的和.1/2+(1/3+2/3)+(1/4+2/4
42、+3/4)+(1/5+2/5+3/5+4/5)+.+39/40解:用通分法求和很繁琐.通过分析数量关系可知,每个加数乘以2,可顺次得到1、2、3、4/.39.所以,(20X39)+2=390即为所求.(5):一正方形,当竖边减少20%横边增加2米时,得到的长方形面积与原正方形面积相等,求原正方形面积.解:一般思路:由于正方形面积=边长X边长.所以应先求边长.用方程解:设正方形边长为一个单位长度,那么面积为一个单位面积.长方形的宽为:1X(1-20%)=80%f单位长度,长为:一个单位面积+80%"单位长度=1.25个单位长度,与2米对应的单位长度为:1.25-1=0.25个单位长度.
43、所以正方形边长(一个单位长度)=2+0.25=8米,正方形面积=8x8=64平方米.很繁琐.巧解思路:因竖边减少20%在原图形上减少的面积与后来因横边增加2米,增加的面积相等.所以设原正方形边长为x米,那么:20%xXx=80%xX2x=8米.正方形面积=8X8=64平方米.(6):某班有40名学生,考数学时有2人缺考,这38人平均分数是89,这2名学生补考后,两人的平均成绩比全班40人的平均成绩多9.5分,这两人的平均成绩是多少解:一般从求平均数的共识考虑,用方程解:设这两人的平均成绩为x,那么:x-(89*38+2x户40=9.5,x=99.推理巧解(抓住平均就是移多补少的实质).这两人的
44、平均分数比全班平均分数多9.5分,把9.5X2=19补给38名学生,每人增加0.5分,所以这两人平均分数为:89+0.5+9.5=99五:注意一般解法的特殊形式:(1):求平均数的一般方法:公式法,平均数=总数量+总份数.但当份数相等时,巧解法:平均数=(第一份数量+第二份数量+000000+第n份数量)+份数.如:某人晨练,第一个5分钟的速度是100米/分,第二个5分钟的速度是110米/分,求他这10分钟内的平均速度一般解法:平均数=(100X5+110X5)+(5+5)=105米/分由于“份数相同,可巧解:平均数=(100+110)+2=105米/分.(2):甲(带着一条狗)乙两人同时从相
45、距100千米的两地出发相向而行,甲速度为6千米/小时,乙速为4千米/小时,狗速为10千米/小时,狗碰到乙时就掉头朝甲走来,碰到甲时又朝乙跑去.直到甲乙两人相遇.这狗走了多少米解:假设分段求出狗与甲、与乙、与甲、与乙.相遇时走的路程,再加起来是很困难的.一般巧解方法是:从整体考虑,狗走的时间就是甲乙相遇用的时间,所以狗走的时间=100(4+6)=10小时,狗走的路程=10X10=100千米.这还不算巧,更巧的方法是:从题意可知:甲乙速度和二狗速,并且走的时间相同,所以,甲乙共走的路程就=狗走的路程=100千米.总的来看,“巧解就是在一题多解情况下的最正确选择.(三)总练习题(用简便方法计算1-1
46、6题,用多种方法计算17-30题,并指出最巧方法.1730题只给出巧解答案.)(1)925-28-72+75(2)(64X125)-(16X28)(3)12.348+25(4)55X55/56(5)3.8+3.75+3.85+3.75(6)123454321+(55555X55555)(11X11=121,111X111=12321,1111X1111=1234321.)(7)18X5/7-5X4/7(8)999X222+333X334(9)(4.8X7.5X8.1)+(2.4X2.7+4)(10)8.3X64+1.7X65(11)12.5*(36-7.2)+3.6(12)43*11.8+86
47、0*0.91(13)(9+2/7+7+2/9)+(5/7+5/9)(14)1/2+1/6+1/12+1/20+1/30(15)(1+1/2+1/3+.+1/1999)乂(1/2+1/3+1/4+.00000+1/2000-(1+1/2+1/3+.+1/2000)X(1/2+1/3+1/4.+1/1999)(15)4327-98(16)求:5+10+15+20+.+200的和(17)比拟9/10和11/12的大小.(提示:有比拟分子、比拟分母、比拟与1的差、比拟它们的倒数、变成整数比拟和用真分数特点比拟等方法.但最巧的比拟方法是用“规律比拟:分子分母都相差1时,分母大的分数大.)(18)比拟:2
48、222221/2222223和3333331/3333334的大小.(提示:巧法是先比拟他们与1的差.)(19)某厂工人植树,假设每人植5棵,剩50棵,假设每人植6棵,差40棵.这厂有多少工人他们共植多少棵树巧解:由题意可知,每人多种1棵,就多种50+40=90棵,所以这场工人有90+1=90人,共植5*90+50=500棵.(20)张老师用216元买钢笔奖励学生,假设每支廉价1元,可多买3支,钢笔原价是多少巧解:由于总价=单价X数量,所以把216分解成两个数相乘有2和108、3和72、4和54、6和36、8和27、9和24.根据题意,从后两组数可知每支笔原价是9元.(21)王华和李明在银行都有存款,原来王比李少
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44873-2024产品追溯追溯编码规则和要求
- 工作总结之法院实习自我总结
- 2024年两性健康项目投资申请报告
- 国家开放大学《教育心理学》形考作业1-4答案
- 个人升职报告-文书模板
- 银行合规管理制度实施优化
- 酒店餐饮服务操作规范制度
- 2024年中国工业涂料行业市场现状及发展趋势分析
- 《让心灵去旅行》课件
- 《邮政营业服务规范》课件
- GB/T 17622-2008带电作业用绝缘手套
- 鹊桥仙秦观阅读理解及答案
- 企业年终总结大会PPT模板
- 2023年黑龙江公务员考试申论真题及答案
- 计量管理人员培训资料课件
- 菌种保藏的方法课件
- 焊工复训课件
- 英语天气课件
- 《活着》读书分享优秀课件
- 红十字会基本知识100题(含答案)
- 螺旋体和支原体课件整理
评论
0/150
提交评论