




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、曷的运算提高练习题一、选择题1、计算(-2)叫(-2) 99所得的结果是()A、 一 299B、 一 2C、299 D、22、当m是正整数时,下列等式成立的有()(1) a2m= (am) 2; (2) a2m= (a2) m; (3) a2m= (- am) 2;(4)a2m= (a2) m.A、4个 B、3个 C、2个 D、1个3、下列运算正确的是()A、2x+3y=5xy B、( 3x2y) 3= - 9x6y3C、4元3yz.:盯= -2x4y4 D、(xy) 3=x3 - y34、a与b互为相反数,且都不等于0, n为正整数,则下列各组中一定互为相反数的是()A、an与 bnB、a2
2、n与 b2nC、a2n+1 与 b2n+1D、a2n -1 与b2n-15、下列等式中正确的个数是()a5+a5=a10;(a) 6? (a) 3?a=a°a4? (a) 5=a20; 25+25=26.A、0个 B、1个C、2个 D、3个二、填空题6、计算:x2?/= ; ( - a2) 3+ ( - a3) 2=7、若 2m=5, 2n=6,则 2m+2n= .三、解答题10、已知2x+5y=3,求4x?32的值.8、已知 3x (xn+5) =3xn+1 +45,求 x 的值。9、若 1+2+3+ +n=a ,求代数式(xny) (xn 1y2) (xn 2y3) (x2yn
3、1) (xyn)的值.11、已知 25m?2?10=57?24,求 m、n.13、若 xm+2n=16, xn=2,求 xm+n 的值.12、已知 ax=5, ax+y=25,求寸+ay的值.14、比较下列一组数的大小.8131, 2741, 96118、若(aVb) 3=a9b15,求 2m+n 的化15、如果 a2+a=0 (aw0)求 3005+a2004+12 的值.16、已知 9n+1 - 32n=72,求 n 的值.19、计算:an5 (an+1b3m2)2+(an1bm2)3 (-b3m+2)20、若 x=3an, y=4L 当 a=2, n=3 时,求 anx- ay22、计算
4、:(a- b) m+3? (b- a) 2? (a- b) m? (b - a) 5的值.21、已知:2x=4y+1, 27y=3x 1,求 x-y 的值.23、若(am+1bn+2) (3nTb2n) =a5b3,则求 m+n 的化24、用简便方法计算:(1) (2j) 2X42(2) ( - 0.25)12X412(3) 0.Cx 25 X 0.125(4) g) 23X (23) 3 i-a负数的奇数次幕是负数,负数的偶数次幕是正数;-1的奇数答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2) 100+ (- 2) 99所得的结果是()A、- 299B、- 2C
5、、299 D、2考点:有理数的乘方。分析:本题考查有理数的乘方运算,(-2) 100表示100个(-2)的乘积,所以(2) 100= (- 2) 99X (- 2).解答:解:(2) 100+ (- 2) 99= (- 2) 99 ( 2) +1=299.故选C.点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.次幕是-1, - 1的偶数次幕是1 .2、当m是正整数时,下列等式成立的有()(1) a2m= (am) 2; (2) a2m= (a2) m; (3) a2m= (-am) 2; (4) a2m= (-ci) m.A、4个 B、3个C、2个D、1个考点:幕的乘方与积的乘方。
6、分析:根据幕的乘方的运算法则计算即可,同时要注意 m的 奇偶性.解答:解:根据幕的乘方的运算法则可判断(1)(2)都正确; 因为负数的偶数次方是正数,所以(3) a2m= (-am) 2正确;(4) am= ( - a) m只有m为偶数时才正确,当m为奇数时不正确;解答:解:A、2x与3y不是同类项,不能合并,故本选项错所以(1) (2) (3)正确.故选B.点评:本题主要考查幕的乘方的性质,需要注意负数的奇数次幕是负数,偶数次幕是正数.3、下列运算正确的是()A、2x+3y=5xyB、( 3x2y) 3= - 9x6y3C 4/户(-*2)=D、(x- y) 3=x3y3考点:单项式乘单项式
7、;幕的乘方与积的乘方;多项式乘多项式。分析:根据幕的乘方与积的乘方、合并同类项的运算法则进误;B、应为(-3x2y) 3= - 27x6y3,故本选项错误;C、4或3yz. (二盯2) = 2%簟*,正确;jL_D、应为(x- y) 3=x3 - 3x2y+3xy2- y3,故本选项错误.故选C.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项,积的乘方、单项式的乘法,需要熟练掌握性质和法则;(2)同类项的概念是所含字母相同,相同字母的指数也相同 的项是同类项,不是同类项的一定不能合并.4、a与b互为相反数,且都不等于0, n为正整数,则下列各行逐一计算即可.组中一定互为相反数的是
8、(A、an与 bnB、a2n与 b2nC、a2n+1 与 b2n+1 D、41 与b"1考点:有理数的乘方;相反数。分析:两数互为相反数,和为0,所以a+b=0.本题只要把选项中的两个数相加,看和是否为 0,若为0,则两数必定互为 相反数.解答:解:依题意,得a+b=0,即2=b.A中,n为奇数,cr+bn=0; n为偶数,cT+bn=2an,错误;B 中,c2n+b2n=2a2n,错误;C 中,a2n+1+b2n+1=0,正确;D 中,a2n 1- b2n 1=2a2n 1,错误.故选C.点评:本题考查了相反数的定义及乘方的运算性质.注意:一对相反数的偶次幕相等,奇次幕互为相反数.
9、5、下列等式中正确的个数是()a5+a5=a10;(a) 6? (a) 3?a=a°a4? (a) 5=a20; 2 5+25=26.A、0个B、1个C、2个D、3个考点:幕的乘方与积的乘方;整式的加减;同底数幕的乘法。分析:利用合并同类项来做;都是利用同底数幕的乘法公式做(注意一个负数的偶次幕是正数,奇次幕是负数);利用乘法分配律的逆运算.解答:解:.a5+a5=2a5;,故的答案不正确;:( - a) 6? (-a) 3= (-a) 9= - s9,故的答案不正确;.-? (-a) 5=a9;,故的答案不正确; 2 5+25=2 X 2 5=26.点评:此题主要考查了同底数幕的乘
10、法和幕的乘方法则,利所以正确白个数是1,故选B.点评:本题主要利用了合并同类项、同底数幕的乘法、乘法分配律的知识,注意指数的变化.二、填空题(共2小题,每小题5分,满分10分)6、计算:x2?X5= x5 ; (- a2) 3+ (a3) 2= 0 .考点:幕的乘方与积的乘方;同底数幕的乘法。分析:第一小题根据同底数幕的乘法法则计算即可;第二小 题利用幕的乘方公式即可解决问题.解答:解:x2?y=x5;(-a2) 3+ (- a3) 2= - a6+a6=0.用两个法则容易求出结果.7、若 2m=5, 2n=6,贝U 2m+2n= 180 .考点:幕的乘方与积的乘方。分析:先逆用同底数幕的乘法
11、法则把2m+2n =化成2m?的形式,再把2m=5, 2n=6代入计算即可.解答:解:Jm=S, 2n=6, .2m+2n=2m? (2n) 2=5 X 62=180.点评:本题考查的是同底数幕的乘法法则的逆运算,比较简单.三、解答题(共17小题,满分0分)8、已知 3x (xn+5) =3xn+1+45,求 x 的值.考点:同底数幕的乘法。专题:计算题指数相加,即am?打am+n计算即可.分析:先化简,再按同底数幕的乘法法则,同底数幕相乘,底数不变,指数相加,即am?养am+n计算即可.解答:解:3x1+n+15x=3xn+1+45, . 15x=45 ,x=3 .点评:主要考查同底数幕的乘
12、法的性质,熟练掌握性质是解 题的关键.9、若 1+2+3+n=a,求代数式(xny) (xn 1y2) (xn 2y3) (x2ynT) (xyn)的化考点:同底数幕的乘法。专题:计算题。分析:根据同底数幕的乘法法则,同底数幕相乘,底数不变,解答:解:原式"xny?x-1丫2?42y3x2yn"xyn=(xn?>n 1?xn 2? ?2?x) ? (y2?3? 叩 1?yn)=xaya.点评:主要考查同底数幕的乘法的性质,熟练掌握性质是解题的关键.10、已知 2x+5y=3,求 4x?32 的值.考点:幕的乘方与积的乘方;同底数幕的乘法。分析:根据同底数幕相乘和幕的乘
13、方的逆运算计算.解答:解:= 2x+5y=3 , 4x?32y=22x?2y=22x+5y=23=8 .点评:本题考查了同底数幕相乘,底数不变指数相加;幕的乘方,底数不变指数相乘的性质,整体代入求解也比较关键.11、已知 25m?2?10=57?24,求 m、n.分析:由ax+y=25,得ax?3=25,从而求得ay,相加即可.专题:计算题.xm+n的值为8.考点:幕的乘方与积的乘方;同底数幕的乘法。专题:计算题。分析:先把原式化简成5的指数幕和2的指数幕,然后利用等量关系列出方程组,在求解即可.解答:解:原式=52m?2?2?5'=52m+n?2+n=57?22m+ 71 = 711
14、+ = 4解得 m=2 , n=3.点评:本题考查了幕的乘方和积的乘方,熟练掌握运算性质和法则是解题的关键.12、已知 ax=5, ax+y=25,求 W+ay 的值.考点:同底数幕的乘法。解答:解:.ax+y=25,.ax?a=25,ax=5 , .ay, =5 ,ax+ay=5+5=10 .点评:本题考查同底数幕的乘法的性质,熟练掌握性质的逆用是解题的关键.13、若 xm+2n=16, xn=2,求 xm+n 的化考点:同底数幕的除法。专题:计算题。分析:根据同底数幕的除法,底数不变指数相减得出xm+2n + xn=xm+n=16+2=8.解答:解:xm+2n+xn=xm+n=16 + 2
15、=8,点评:本题考查同底数幕的除法法则,底数不变指数相减,考点:幕的乘方与积的乘方一定要记准法则才能做题.14、已知10a=3, 10=5, 10丫=7,试把105写成底数是10的幕的形式 10" + B+Y .考点:同底数幕的乘法。分析:把105进行分解因数,转化为3和5和7的积的形式,然后用10a、10,、10丫表示出来.解答:解:105=3X5X7,即10 5=10)7=10,105=10 910?10=10" 十 二丫故应填10"+ My点评:正确利用分解因数,根据同底数的幕的乘法的运算性质的逆用是解题的关键.专题:计算题。分析:先对这三个数变形,都化成底
16、数是 3的幕的形式,再比较大小.解答:解:: 8311= ( 34) 31=3124;2741= ( 33) 41=3123;961= (32) 61=3122;8131> 2741 >961.点评:本题利用了事的乘方的计算,注意指数的变化.(底数是正整数,指数越大幕就越大)16、如果 a2+a=0 ( aw 0)求 a2005+a2004+12 的值.考点:因式分解的应用;代数式求值。15、比较下列一组数的大小.8131, 2741, 961专题:因式分解分析:观察a2+a=0 (aw0)求a2005+a2004+12的化只要将4005+a2004+12转化为因式中含有a2+a的
17、形式,又因为3005+a2004+12=a2003(4+a)+12,因而将 a2+a=0 代入即可求出化解答:解:原式二a2003 (a2+a) +12=a2003x 0+12=12点评:本题考查因式分解的应用、代数式的求值.解决本题的关键是a2005+a2004将提取公因式转化为a2003 (a2+a),至此问题的得解.17、已知 9n+1 - 32n=72,求 n 的值.考点:幕的乘方与积的乘方。分析:由于 72=9X8, rffin+1 -32n=9nX 8,所以 9n=9,从而得出n的值.当 9n+1 32n=72 时,9nx 8=9 X 8,;9n=9, . n=1 .点评:主要考查
18、了幕的乘方的性质以及代数式的恒等变形. 本 题能够根据已知条件,结合72=9 X 8,将9n+1 - 32n变形为9n X 8, 是解决问题的关键.18、若(dbmb) 3=a9b15,求 2m+n 的化考点:幕的乘方与积的乘方。分析:根据(anbmb) 3=a9b15,比较相同字母的指数可知,3n=9, 3m+3=15,先求m、n,再求2m+n的值.解答:解: (aVb) 3= (an) 3 (bm) 3b3=a3nb3m+3,3n=9,3m+3=15,解答:解:.9n+1 32n=9n+1 9n=9n(91) =9nX 8,而 72=9 X 8, 解得:m=4, n=3 ,.2m+n=27
19、=128.点评:本题考查了积的乘方的性质和幕的乘方的性质,根据 相同字母的次数相同列式是解题的关键.19、计算:an 5 (an+1b3m 2) 2+ (an1bm 2) 3 (-b3m+2)考点:幕的乘方与积的乘方;同底数幕的乘法。分析:先利用积的乘方,去掉括号,再利用同底数幕的乘法计算,最后合并同类项即可.解答:解:原式二an5 (a2n+2b6m 4) +a3n 3b3m 6 (-b3m+2),=a3n 3b6m 4+a3n 3 (-b6m 4),=a3n 3b6m 4 渣 3b6m-4=0.点评:本题考查了合并同类项,同底数幕的乘法,幕的乘方,20、若 x=3an, y的值.积的乘方,
20、理清指数的变化是解题的关键.=1,当 a=2, n=3 时,求 anx - ay考点:同底数幕的乘法。1 2n -1分析:把x=3an, y=-亏。匚 ,代入anx-ay,利用同底数幕的乘法法则,求出结果.解答:解:anx - ay二anx 3ai- ax (=3a2n+a2n a=2, n=3,3an+;a2n=3 X 26+; X 26=224.点评:本题主要考查同底数幕的乘法的性质,熟练掌握性质是解题的关键.21、已知:2x=4y+1, 27y=3x 1,求 x-y 的值.m, n为正整数),根据指数相等列出方程是解题的关键.考点:幕的乘方与积的乘方。22、计算:(a- b)m+3?(b- a)2?(a-b)m?(b - a)5分析:先都转化为同指数的幕,根据指数相等列出方程,解 考点:同底数幕的乘法。方程求出x、y的值,然后代入x-y计算即可.分析:根据同底数幕的乘法法则,同底数幕相乘,底数不变,解答:解:.2x=4y+1,指数相加,即am?3=am+n计算即可.2x=22y+2,解答:解:(a b) m+3? (b a) 2? (a b) m? (b a) 5,x=2y+2 =(a- b) m+3? (a- b) 2? (a- b) m? - Q- b) 5,又.27=3x1,(a b)2m+1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村苗木回收合同标准文本
- 出售实木柜台合同样本
- 出租包车服务合同标准文本
- 公司雇用项目经理合同标准文本
- ktv设计合同标准文本
- 公寓底价出售合同样本
- 与美甲店合同样本
- 住建部勘察设计 合同标准文本
- 健身器材合同标准文本110网
- 仓管聘用合同标准文本
- 统编版小学语文四年级下册第13课《猫》精美课件
- 新媒体环境下新闻虚拟主播对受众认知影响及发展路径研究
- 2025年宁波职业技术学院单招职业倾向性测试题库及答案(历年真题)
- 山东省威海市2024届高三下学期二模试题 数学 含解析
- 农大3号鸡饲养管理手册-
- 不公开开庭审理申请书
- DB32T464-2009 文蛤 滩涂养殖技术规范
- 2025年劳务合同范本(2篇)
- 福建能化集团笔试题库
- 2024年10月自考00341公文写作与处理试题及答案
- 制造业员工岗位技能提升方案
评论
0/150
提交评论