高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习_第1页
高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习_第2页
高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习_第3页
高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习_第4页
高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习一.轻绳模型1 .轻绳模型的特点:“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。它不能产生支持作用。它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。2 .轻绳模型的规律:轻绳各处受力相等,且拉力方向沿着绳子;轻绳不能伸长;用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;轻绳的弹力会发生突变。3 .绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。4 .力对绳子做

2、的功,全部转化为绳对物体的做的功。5 .绳连动问题:当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。 、一一 二、一 L, /当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为8时,v绳二v物cosQ例1:如图所示,将一根不能伸长、柔软的轻绳两端分别系于A B两点上,一物 I体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为81,绳子张力为Fi; j将绳子B端移至C点,待整个系统达到平衡时,两段绳子间的夹角为日2,绳子张 慧。/ Cn力为F2;将绳子B端移至D

3、点,待整个系统达到平衡时,两段绳子间的夹角为63,丫绳子张力为F3,不计摩擦,则()A- 11=Z=U3B.三二2<%C. Fi>F2>F3D. Fi=F2<F3>、1-1 .如图所示,轻绳上端固定在天花板上的 O点,下端悬挂一个重为10N的物体A,B是固定的表面光滑的小圆柱体.当A静止时,轻绳与天花板的夹角为 30。,B受到XA绳的压力是()一A.5NB.10NC.5ND.10N1-2.相距4m的两根柱子上拴着一根长为 5m的细绳,细绳上有一小的清滑轮,吊着重为180N的物体,不计摩擦,当系统平衡时, AO绳和BO绳受到的拉力T为多少?如果将细绳一端的悬点B向上

4、移动些,二绳张力大小的变化情况是什么? (150N)(细绳绕过滑轮,相当于“活结”,也就是一根绳子,一根绳子的拉力处处相等。)例2:如图所示,三根长度均为 l的轻绳分别连接于 C D两点,A B两端被悬挂在水平 天花板上,相距21 .现在C点上悬挂一个质量为 m的重物,为使CD期保持水平,在 D点 上可施加力的最小值为()A. mgB. 3 m(C. 1 mg. 1 mg324变式训练1.段不可伸长的细绳 OA OB OC能承受的最大拉力相同,它们共同悬挂一重物,如图 4-7所示, 其中OB是水平的,A端、B端固定.若逐渐增加C端所挂物体的质量,则最先断的绳()A.必定是OAB必定是OBC.必

5、定是OCD可能是OB也可能是OC变式训练2.如图所示,物体的质量为 2kg .两根轻细绳 AB和AC的一端连接于竖直墙上,另一端系于物体上,当AB、AC均伸直时,AB、AC的夹角日=60口,在物体上另施加一个方向也与水平线成日=60的拉力F ,若要使绳都能伸直,求拉力 F的大小范围.变式训练3.如图所示,电灯悬挂于两壁之间,更换水平绳OA1连结点A向上移动而保持 O直的位置不变,则 A点向上移动时A.绳O徽拉力逐渐增大B.绳O徽拉力逐渐减小C.绳O徽拉力先增大后减小 D.绳OA勺拉力先减小后增大变式训练4. 一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m=4Kg和m=2Kg的物

6、体,如图所示。在滑轮之间的一段绳上悬挂物体体不可能保持平衡,求 m勺取值范围。(绳的“死结”问题,也就是相当于几根绳子, 每根绳的拉力一般来说是不相同的。例3:如图跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落.已知运动员和他身上装备的总重力为 G,圆顶形降落伞伞面的重力为 G,有8条相同的拉线,一端与飞行员相邻(拉线重力不计),另一端均匀分布在伞面边缘上,每根拉线和竖直方向都成 每根拉线上的张力大小为()A.闻 B.,3(G1 -G2)m为使三个物300角.那么1212C. (Gi G2)D.Gi变式训练:三根不可伸长的相同的轻绳,一端系在半径为穿过半径为0的第2个圆环,另一端同样地系

7、在半径为定在水平面上,整个系统处于平衡状态.试求第2个环中心与第3个环中心之间的距离.( 个环都是用相同的金属丝制作的,摩擦不计)(立体图形和“活结”,立体图形和“死结”,你能分清吗?揭开神秘的面纱吧!)1230的环1上,彼此间距相等,绳2r。的环3上,如图所示,环 1固例4:如左图,若已知物体 A的速度大小为Va,求重物B的速度大小?变式训练.如图所示,当小车 A以恒定的速度v向左运动时,则对于 B物体来说,下列说法正确的是()A.加速上升B.匀速上升C.B物体受到的拉力大于B物体受到的重力D.B物体受到的拉力等于B物体受到的重力(绳连动问题:需要搞清楚物体的速度和绳的速度之间的关系哟!)A

8、点,左右两侧绳都已绷紧例5:如图所示,在与水平方向夹角为e的恒力f的作用下,物体通过的位移为S,则力F做的功为多少?变式训练:一辆车通过一根跨过定滑轮的绳PQ提升井中质量为 m的物体,如图8-28所示:绳的P端拴在车后的挂钩上, Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在并且是竖直的,左侧绳绳长为 H提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车经过B点时的速度为vB.求车由A移到B的过程中,绳 Q端的拉力对物体做的功?(通过绳对物体做功:力对绳做了多少功,全部转化为对绳物体做的功。)轻杆模型1 .轻杆模型的

9、特点:轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微 小,看作不可伸长或压缩。2 .轻杆模型的规律:轻杆各处受力相等,其力的方向不一定沿着杆的方向;轻杆不能伸长或压缩;轻杆受到的弹力的方式有拉力或压力。杆对物体的力一般只能被动分析,而不能主动出击(即根据运动状态进行受力分析)3 .有转轴的杆给物体的力一般沿着杆的方向并且通过转轴。4 .杆连动的处理思路与方法和处理绳连动的相同例1 :如图所示,一根弹性杆的一端固定一个重力是2N的/、球,小球处于静工弹性杆对小球的弹力()A.大小为2N,方向平行于斜面向上JB.大小为1N,方向平行于斜面向上C.大小

10、为2N,方向垂直于斜面向上D.大小为2N,方向竖直向上变式训练:如图所示,小车上固定一弯折硬杆ABC卞f C端固定一质量为 m的小球,已知/ ABO日,当小车以加速度 a向左做匀加速直线运动时,杆C端对小球的作用疗 企力大小为多少。*(固定杆,也叫做没有转轴的轻杆,它给结点的力的方向怎么来确定呢? ?)I例2:如图所示,轻杆的一端钱链连接于墙壁上,另一端装有一光滑的小滑轮,细绳绕过小滑轮一端系住一重物,另一端拴于墙壁上的 P点,整个系统处于平衡状态。现把拴于墙上P 点的绳端向上移动,并保证系统始终处于平衡状态,则轻杆的作用力如何变化?变式训练.的一端A固定在墙上,另一端通过固定在直杆 BE的定

11、滑轮C吊一重物,如图,杆 BE可以绕B点转动。杆、滑轮,绳的质量及摩擦均不计,设 AC段绳的拉力为T, BE杆受的 压力为F,把绳端 A点墙稍向下移一微小距离,整个装置再一次平衡后有AT、F土增大 BT先减小后增大、F增大CT不变、F增大 DT、F均不变(具有转轴的杆,当它缓慢转动时,感受力的特点是什么?应该怎么处理呢?)(杆连动问题:和绳连动问题有相似的地方吗?如果有,那就“移花接木”吧)例4:如图所示,一根轻质细杆的两端分别固定着 AO=a BO=2a使细杆从水平位置由静止开始转动,当 变式训练.如图14所示,A B两小球用轻杆连接,A、B两只质量均为 m的小球,O点是一光滑水平轴,已知B

12、球转到O点正下方时,它对细杆的拉力大小是多大A球只能沿内壁光滑的竖直滑槽运动,面内.开始时杆竖直, A B两球静止.由于微小的扰动,B开始沿水平面向右运动.已知B球的质量为mB,杆长为L.则:(1) A球着地时的速度为多大 ?(2) A球机械能最小时,水平面对 B球的支持力为多大?(3)若mA=mB,当A球机械能最小时,杆与竖直方向夹角的余弦值为多大?A球机械能的最小值为多大?(选水平面为参考平面)(杆连接的做功问题,杆的两端分别连接一个物体,做功有什么特点?)B球处于光滑水平A球的质量为mA,图14三.弹簧模型1 .轻弹簧模型的特点 轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量

13、有关。2 .轻弹簧的规律 轻弹簧各处受力相等,轻弹簧产生的弹力只能沿弹簧的轴线方向,与弹簧发生形变的方向相反;弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量; 弹簧的弹力不会发生突变。3 .弹力做功与电场力、重力做功一样与过程没有关系,至于初末位置有关。,、一1 . 2公式Ep =kx在高中课本中没有出现过,所以一般不能直接用。而是根据对称和类比的思想来解决问题。 2例1:如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:中弹簧的左端固定在墙上, 中弹簧的左端受大小也为 F的拉力作用,中弹簧的左端拴 一小物块,物块在光

14、滑的桌面上滑动,中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l1、 12、1 3、1 4依次表示四个弹簧的伸长量,则有()A. 12 2VWWA/fDF WWWV FC. 11 >-VvVWVv-F7555555555555555553555555555555> 1 1B .1 4 > 1 31 3D. 1 2= 1 4楚弹簧的读数与弹簧关系:如果弹簧测力计的读数为F,那么弹簧两端受到力的大小都为F)- ft 啊$<<<啊 u A n.弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图像如图(乙)所示,则例2:如图,

15、a、b、c为三个物块,M N为两个轻弹簧,R为跨过定滑轮的轻绳,系统静 止,则下列说法中正确的有()A.弹簧N一定处于伸长状态 B.弹簧N可能处于原长状态C.弹簧M一定处于压缩状态 D.弹簧M可能处于伸长状态变式训练:图所示,重为 G的质点P与三根劲度系数相同的轻弹簧 A、B、C相连,C处于竖直方向,静止时相邻弹簧间的夹角均为120。.已知弹簧A、B对质点P的弹力大小各为G2 ,弹簧C对质点P的弹力大小可能为()A. 3G2B. G2C. 0D. 3G(弹簧既有可能被拉伸也有可能被压缩,全面的思维才是王道!)例3:如图所示,质量为 酶勺物体被劲度系数为k2的弹簧2悬挂在天花板上,下面还拴着劲度

16、系数为k1的轻弹簧1,托住下弹簧的端点 Affl力向上压,当弹簧2的弹力大小为mg2时,弹簧1的下端点A上移的高度是多少?变式训练:如图所示,两木块的质量分别为 m和m,两轻质弹簧 A、B的劲度系数分别为 匕和k2,若在m上再放一质量为 m的物体,待整个系统平衡时,m下降的位移为多少?(弹簧的末端移动问题,末端移动量和每个弹簧的末端移动量有什么关系呢?能很好的用 F =kAx, F = k(l 10), AF =kAx 这几个公式?)例4:如图(甲)所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上 压缩弹簧到最低点,然后又被弹起离

17、开弹簧,上升到一定高度后再下落,如此反复。通过安装在A. ti时刻小球动能最大B. t2时刻小球动能最大C. t2 t3这段时间内,小球的动能先增加后减少D. t2 t3这段时间内,小球增加的动能等于弹簧减少的弹性势能变式训练1.一个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹起到原高度.小孩从高处开始下落到弹回的整个过程中,他的运动速度随时间变化的图象如图所示,图中 Oa段和cd段为直线,根据此图象可知, 小孩和蹦床相接触的时间为A. t 2 t 4B. t 1 t 4C.tl t5D.t2 t5变式训练2:如图所示,一弹簧台秤的秤盘和弹簧质量都不计,盘内放一物体P处于静止。P的质量 附1

18、2kg,弹簧的劲度系数 k=800N/m。现在给P施加一竖直向上的力 F,使P从静止开始做匀加速运动。已知头 0.2s 内F是变力,在0.2s以后F是恒力。求F的最大值和最小值。(和弹簧弹力有关的牛顿运动定律问题,有加速度变化的临界问题,也有加速度恒定的问题,怎么样突破, 那就需要耐心了 !)四.瞬时突变问题例1:质量分别为m和mB的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下,当细线被剪 断的瞬间,关于两球下落加速度的说法中,正确的是 ()A. aA=&=0B. aA=aB=gC. aA>g, aB=0D. aA<g, aB=0变式训练1.如图2所示x、y、z为三个物块

19、,K为轻质弹簧,L为轻线,系统处于平衡状态.现若将L突然剪断,用ax、ay分别表示刚剪断时 x、y的加速度,则有()A ax= 0、ay= 0 B. ax= 0、ayW0C. a*w 0、ayw 0D. a*w 0、ay= 0变式训练2.如图所示,一条轻弹簧和一根细绳共同拉住一个质量为m的小球,平衡时细线是水平的,弹簧与竖直方向的夹角是8 ,若突然剪断细线瞬间,弹簧拉力大小是多少?将弹簧改为细绳,剪断的瞬间 BO上张力如何变化?(在某一瞬间,物体由一种状态变化到另一种状态,从而引起运动和受力在短时间内发生急剧的变化, 物理学上称之为突变问题。)答案.轻绳模型1 .轻绳模型的特点:“绳”在物理学

20、上是个绝对柔软的物体,它只产生拉力(张力) ,绳的拉力沿着绳的方向并指向绳的收缩方向。它不能产生支持作用。它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。2 .轻绳模型的规律:轻绳各处受力相等,且拉力方向沿着绳子;轻绳不能伸长;用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;轻绳的弹力会发生突变。3 .绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。4 .力对绳子做的功,全部转化为绳对物体的做的功。5 .绳连动问题:当物体的运动方向沿绳子方向(与绳子平行)时,物体的

21、速度与绳子的速度相同。日时,丫绳二v物cos8当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速I)00BA B两点上,一物 也,绳子张力为闩;度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为 例1:如图所示,将一根不能伸长、柔软的轻绳两端分别系于 体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为 将绳子B端移至C点,待整个系统达到平衡时,两段绳子间的夹角为 日2,绳子张 力为F2;将绳子B端移至D点,待整个系统达到平衡时,两段绳子间的夹角为 63,绳子张力为F3,不计摩擦,则(BD)A. 1=2= 3 B. 7'1=

22、2 < 3C. F1>F2>F3D. F1 = F2<F31-1 .如图所示,轻绳上端固定在天花板上的O点,下端悬挂一个重为 10N的物体A,.当A静止时,轻绳与天花板的夹角为30。,B受到B.10NB是固定的表面光滑的小圆柱体 绳的压力是(B)A.5NC.5ND.10N180N的物体,不计B向上移动些,二绳张力摩擦,当系统平衡时,大小的变化情况是什么?(细绳绕过滑轮,相当于1-2.相距4m的两根柱子上拴着一根长为5m的细绳,细绳上有一小的清滑轮,吊着重为AO绳和BO绳受到的拉力 T为多少?如果将细绳一端的悬点(150N,不变化)“活结”,也就是一根绳子,一根绳子的拉力

23、处处相等。)例2:如图所示,三根长度均为 l的轻绳分别连接于 C D两点,A B两端被悬挂在水平 天花板上,相距21 .现在C点上悬挂一个质量为 m的重物,为使。及南保持水平,在 D点 上可施加力的最小值为(C)A. m*. -3 m. 1 m. 1 mg 3242-1 . 一段不可伸长的细绳OA OB OCtt承受的最大拉力相同,它们共同悬 挂一重物,如图4-7所示,其中OB是水平的,A端、B端固定.若逐渐增加C端所挂物体的质量,则最先断的纯(A)A.必定是OAB必定是OBC.必定是OCD可能是OB也可能是OC2-2 .如图所示,物体的质量为2kg .两根轻细绳AB和AC的一端连接于竖直墙上

24、,另一端系于物体上,当AB、 AC均伸直时,AB、AC的夹角日=60”,在物体上另施加一个方向也与水平线成 日=60的拉力F ,若要使 绳都能伸直,求拉力 F的大小范围.f的取值范围为:2。招 n &n332-3.如图所示,电灯悬挂于两壁之间, 更换水平绳0检连结点A向上移动而保持C点的位置不变,则A直向上移 动时(D)A.绳OA勺拉力逐渐增大B.绳OA勺拉力逐渐减小C.绳OA勺拉力先增大后减小 D.绳OA勺拉力先减小后增大2-4. 一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m=4Kg和m=2Kg的物体,如图所示。在滑轮之间的一段绳上悬挂物体m,为使三个物体不可能保持

25、平衡,求m勺取值范围。(只要求个别学生做)(绳的“死结”问题,也就是相当于几根绳子,每根绳的拉力一般来说是不相同的。)例3:如图跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落.已知运动员和他身上装备的总重力为 G,圆顶形降落伞伞面的重力为 G,有8条相同的拉线,一端与飞行员相邻(拉线重力不计),另一端均匀分布在伞面边缘上,每根拉线和竖直方向都成300角.那么每根拉线上的张力大小为(A)A.星B.凝Gi +G2) 1212C. (G1 G2) D. Gi 843-1 :三根不可伸长的相同的轻绳,一端系在半径为°的环1上,彼此间距相等,绳穿过半径为。的第2个圆环,另一端同样地系在半

26、径为2。的环3上,如图所示,环1固定在水平面上,整个系统处于平衡状态.试求第2个环中心与第 3个环中心之间的距离.(三个环都是用相同的金属丝制作的,摩擦不计)(只要求少数同学做)(立体图形和“活结”,立体图形和“死结”,你能分清吗?揭开神秘的面纱吧!)例4:如左图,若已知物体A的速度大小为 va,求重物B的速度大小?4-1.如图所示,当小车 A以恒定的速度v向左运动时,则对于 B物体来说,下列说法正确的是(AQA.加速上升B.匀速上升C. B物体受到的拉力大于 B物体受到的重力D. B物体受到的拉力等于 B物体受到的重力(绳连动问题:需要搞清楚物体的速度和绳的速度之间的关系哟!)例5:如图所示

27、,在与水平方向夹角为日的恒力F的作用下,物体通过的位移为S,则力F做的功为多少?W=Fscosi +Fs5-1 : 一辆车通过一根跨过定滑轮的绳PQ提升井中质量为 m的物体,如图28所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;滑轮上的摩擦都忽略不计.开始时,车在 A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动, 沿水平方向从 A经过B驶向C.设A到B的距离也为H,车经过B点时的速度为vB.求车由A移到B的过程中,绳 Q端的拉力对物体做的功?(通过绳对物体做功:对绳做了多少功,全部转化为力对物体做的功。)轻杆模型1 .轻杆模型的特点:轻杆的质量可

28、忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大, 小,看作不可伸长或压缩。2 .轻杆模型的规律:轻杆各处受力相等,其力的方向不一定沿着杆的方向;轻杆不能伸长或压缩;轻杆受到的弹力的方式有拉力或压力。杆对物体的力一般只能被动分析,而不能主动出击(即根据运动状态进行受力分析)3 .有转轴的杆给物体的力一般沿着杆的方向并且通过转轴。4.杆连动的处理思路与方法和处理绳连动的相同例1 :如图所示,一根弹性杆的一端固定一个重力是2N的小球,小球处于静止状态时弹性杆对小球的弹力(D)A.大小为2N,方向平行于斜面向上B.大小为1N,方向平行于斜面向上C.大小为2N,方向垂直于斜面向上D.大小为2N,

29、方向竖直向上1-1 :如图所示,小车上固定一弯折硬杆 ABC卞f C端固定一质量为 m的小球,已知 /ABC=e,当小车以加速度 a向左做匀加速直线运动时,杆 C端对小球的作用力大 小为多少。(固定杆,也叫做没有转轴的轻杆,它给结点的力的方向怎么来确定呢? ?)例2:如图所示,轻杆的一端钱链连接于墙壁上,另一端装有一光滑的小滑轮,细绳绕过小滑轮一端系住一重物,另一端拴于墙壁上的 P点,整个系统处于平衡状态。现把拴于墙上 点的绳端向上移动,并保证系统始终处于平衡状态,则轻杆的作用力如何变化?(轻杆的作用力在逐渐减小)5、一轻杆BQ其O端用光滑镀链固定在竖直轻杆 AO上,B端挂一重物,且系一细绳,

30、 细绳跨过杆顶 A处的光滑小滑轮,用力 F拉住,如图所示.现将细绳缓慢往左拉,使杆 BOIf AO'司的夹角0逐渐减小,则在此过程中,拉力 F及杆BO所受压力Fn的大小变 化情况是A. Fn先减小,后增大 C. F先减小,后增大B. Fn始终不变D. F始终不变(具有转轴的杆,当它缓慢转动时,感受力的特点是什么?应该怎么处理呢?)例3:如图所示,轻杆的两端分别连着A、B两球,B球处于水平地面,A球靠在竖直墙壁上,由于地面打滑,B球沿水平地面向左滑动,A球靠着墙面向下滑。某时,B球滑到图示的位置,速度 VB=10m/s ,则此时 V=m/s(sin37 0=0.6cos37 o=0.8)

31、vA=7.5m/sP13-1如图所示,一轻杆两端分别固定质量为mA和RB的两个小球A和B (可视为质点)。将其放在一个直角形光滑槽中,已知当轻杆与槽左壁成 Vb?口角时,A球沿槽下滑的速度为 VA,求此时B球的速度va cos37 ° =v bco53 °(杆连动问题:和绳连动问题有相似的地方吗?如果有,那就“移花接木”吧)例4:如图所示,一根轻质细杆的两端分别固定着 A B两只质量虱为 m而小球,O点是二 光滑水平轴,已知 AO=a, BO=2a使细杆从水平位置由静止开始转动,当 B球转到O点正 下方时,它对细杆的拉力大小是多大 ?T=1.8mg,4-1 .如图14所示,

32、A B两小球用轻杆连接,A球只能沿内壁光滑的竖直滑槽运动,B球B开始沿水平面向右运动.已知 A球?A球机械能的图14处于光滑水平面内.开始时杆竖直,A、B两球静止.由于微小的扰动,的质量为mi, B球的质量为 mi,杆长为L.则:(1) A球着地时的速度为多大 ?(2) A球机械能最小时,水平面对 B球的支持力为多大?(3)若RA=rn,当A球机械能最小时,杆与竖直方向夹角的余弦值为多大 最小值为多大?(选水平面为参考平面)N=m Bg(杆连接的做功问题,杆的两端分别连接一个物体,做功有什么特点?三.弹簧模型1 .轻弹簧模型的特点 轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关

33、。2 .轻弹簧的规律 轻弹簧各处受力相等,轻弹簧产生的弹力只能沿弹簧的轴线方向,与弹簧发生形变的方向相反;弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;弹簧的弹力不会发生突变。3 .弹力做功与电场力、重力做功一样与过程没有关系,至于初末位置有关。12 .一一 . 公式Ep =_kx在高中课本中没有出现过,所以一般不能直接用。而是根据对称和类比的思想来解决问题。 p 2例同它的1 : 的 们 拉如 弹 的 力 F VWWW F-WVWWA F-AAAAA/VF各不相同:中弹簧的左端固定在墙上, 中弹簧的左端受大小也为 F的拉力作用,图所示,四个完全相 簧都处于水平位置,

34、 右端受到大小皆为F作用,而左端的情况中弹簧的左端拴一小.若认为弹簧的物块,物块在光滑的桌面上滑动,中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动质量都为零,以l1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有(D)A. 12>11B. 14>13 C . l1>l 3D. l 2= l 4(搞清楚弹簧的读数与弹簧受力的关系:如果弹簧测力计的读数为F,那么弹簧两端受到力的大小都为F)例2:如图,a、b、c为三个物块,正确的有(BD)A.弹簧N一定处于伸长状态 B.弹簧C.弹簧M一定处于压缩状态 D.弹簧M N为两个轻弹簧,R为跨过定滑轮的轻绳,系统静止,则下列说法中

35、N可能处于原长状态M可能处于伸长状态2-1 :如图所示,重为 G的质点P与三根劲度系数相同的轻弹簧竖直方向,静止时相邻弹簧间的夹角均为120。.已知弹簧 AA B、C相连,C处于各为G/2 ,弹簧C对质点P的弹力大小可能为(AB )A. 3G2C. 0B. G2D. 3GB对质点P的弹力大小JJJ F J ¥/¥(弹簧既有可能被拉伸也有可能被压缩,全面的思维才是王道!例3:如图所示,质量为 m勺物体被劲度系数为k2的弹簧2悬挂在天花板上,下面还拴着劲度系数为ki的轻弹簧1,托住下弹簧的端点 Affl力向上压,当弹簧2的弹力大小为mg2时,弹簧1的下端点Ai上移的高度是多少?移的局度是3-1 :如图所示,两木块的质量分别为m和m2,两轻质弹簧 A B的劲度系数分别为 k1和k2,若在m上再放一质量为mo的物体,待整个系统平衡时,m下降的位移为多少?&=(汉A+ Mb')-( Ma+ &b尸(弹簧的末端移动问题,末端移动量和每个弹簧的末端移动量有什么关系呢?能很好的用 F =k&x, F = k(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论