长江大学《机械设计》填空题复习_第1页
长江大学《机械设计》填空题复习_第2页
长江大学《机械设计》填空题复习_第3页
长江大学《机械设计》填空题复习_第4页
长江大学《机械设计》填空题复习_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、机械设计基础习题库第一篇1、 设计机械零件时,选择材料主要应考虑三方面的问题,即使用 要求、 工艺 要求和 经济 要求。2、 由于合金钢主要是为了提高强度,而不是为了提高 刚度。而且通常要进行适当的热处理才能得到充分利用。3、 零件刚度是指零件在载荷作用下抵抗弹性变形的能力。常用的提高零件刚度的措施有采用抗弯曲或扭转变形强的剖面形状,减小跨距等。4、 脆性材料制成的零件,在静应力下,通常取材料的强度极限为极限应力,失效形式为断裂;塑性材料制成的零件,在简单静应力作用下,通常取材料的屈服极限 为极限应力,失效形式为塑性变形;而在变应力作用下,取材料的 疲劳极限 为极限应力,失效形式为疲劳断裂。5

2、、 静止的面接触零件在外载荷作用下, 接触表面将产生挤压应力,对于塑性材料的零件将产生表面 塑 性变形 而破坏;而在点线接触零件,在外载荷作用下,接触处将产生 接触 应力,从而将引起零件的 疲 劳点蚀破坏。6、 二个零件相互接触的表面呈点、线接触,并具有一定的 相对滑动,这种接触面的强度称表面接触强 度。如通用件中齿轮的工作表面。7、 按零件接触状态的不同,三种表面强度的区别是:接触强度的滑动表面为点、线 接触;挤压强度的静接触面为 面接触;比压强度的滑动表面为面接触。8 两零件高副接触时, 其最大接触应力取决于材料弹性模量;接触点曲率半径 及 单位接触宽度载荷 。9、 随时间变化的应力称为变

3、应力,在变应力作用下,零件的损坏是疲劳断裂。10、 变应力可归纳为对称循环变应力,非对称循环变应力和脉动循环变应力三种基本类型。在变应 力中,循环特性r变化在+1-1之间,当r= -1时,此种变应力称为对称循环变应力;r=0时,称为脉动循 环变应力;r= +1时,即为静应力。11、 在每次应力变化中,周期、应力幅 和 平均应力 如果都相等则称为稳定变应力,如其中之一不相 等,则称为非稳定变应力。12、 变应力的五个基本参数为最大应力 cmax、 最小应力 in、应力幅 与、平均应力 旳、 循环特性r。13、 脉动循环变应力的 b min= 0; b m= b a=旦max/2 ;循环特性r为

4、0 。14、 当循环特性r=-1,变应力为 对称循环:循环特性r=0,变应力为 脉动循环。15、 在变应力参数中,如以 b max,b min表示,平均应力b m=( b max+b min)/2,应力幅b a=( b max- b min)/2,循 环特性 r=b min/ b max。16、 应力循环特性r= b min/b max,其中应力的取值是指 绝对值 的大小,但如有方向改变时,其比值要加 负 号,故r值总是在-1+1之间。17、 用应力幅b a=及平均应力b m作为纵横坐标的极限应力图, 是表示材料不同的 循环特性 与不同的疲劳 极限之间的关系。在纵坐标上为对称循环应力,其循环特

5、性为,极限应力为_b二_ ;在横坐标上为静应力,其循环特性为 +1,塑性材料的极限应力为。18、 在变应力中,等效应力幅 b av=(k;:)Db ax+l-b m,式中的综合影响系数 代Jd是表示 表面状态;绝对 尺寸,应力集中 对零件疲劳强度的影响;而-:;:是把平均应力折合为 应力幅 的等效系数。19、 材料发生疲劳破坏时的应力循环次数N必小于或等于该材料的循环基数 No;由于应力集中、绝 对尺寸、及表面状态等影响,零件的疲劳极限通常必小于其材料的疲劳极限。20、 影响零件疲劳强度的因素主要有:应力集中、 绝对尺寸 和 表面状态 。它们在变应力中,只对应力幅有影响。21、在影响零件疲劳强

6、度的因素中,绝对尺寸系数是考虑零件剖面的绝对尺寸愈大,使材料晶柱粗大,岀现缺陷的概率愈大,而使疲劳极限下降,表面状态系数是考虑零件表面的粗糙度对疲劳强度的影响,而根据试验,以上两个系数及有效应力集中系数只对变应力中的应力幅有影响。22、金属材料的疲劳曲线有两种类型:一种是当循环次数 N超过某一值N0以后,曲线即趋向水平。另一种则曲线无水平部份,疲劳极限随N增加而下降。22、 普通碳钢的疲劳曲线有两个区域:N _No区为 无限寿命区,NN 0区为 有限寿命区,在 无限寿命区 区疲劳极限是一个常数。23、 疲劳极限的定义是在循环特性r 一定时,应力循环 N次后,材料 不发生疲劳破坏 时的最大应力。

7、 当N为卫0_时的疲劳极限叫做持久极限。24、 零件疲劳计算中,一定的循环特性 r下,应力的实际循环总次数 Ni与相应应力下达到 疲劳时的循环 总次数Ni之比,叫作寿命损伤率。零件在各应力作用下达到疲劳 极限时,各寿命损伤率之和应等于,这就是疲劳损伤积累假说。25、 材料疲劳损伤累积假说认为: 大于 疲劳极限 的各实际工作应力每循环一次,就造成一次 寿命 损失, 因此用各应力的实际总循环总次数 N,与相应的达到疲劳时循环次数 Ni之比表示的 寿命损伤率 在零件达 到疲劳极限情况时,各应力下其值之和应等于 1 。26、 材料的疲劳曲线是表示一定的 _L下,循环次数 N与疲劳极限 的关系;用平均应

8、力 b m作横坐标, 应力幅b a为纵坐标表示的极限应力图,反映了不同的丄下,具有不同的 极限应力。27、 最典型的四种磨损为:粘着磨损;接触疲劳磨损;磨料磨损;腐蚀磨损。28、 为了减轻粘着磨损可采取合理选择材料、加添加剂、限止摩擦表面的温度和压强等措施。29、 点蚀的形成和润滑油的存在有密切关系,润滑油的粘度愈小,点蚀的发展愈迅速;若没有润滑油,则接触处的主要破坏形式是磨损。30、 将齿轮加工精度由8级改为7级,则齿轮强度设计中的动载荷系数数值将减小。若齿轮的速度增加, 则动载荷系数将增大。第二篇1、紧螺栓联接的螺栓强度可按纯拉伸计算,其强度条件式为,其中1.3是考虑螺纹j un ppi

9、f力矩的影响nd w2、 螺纹松脱的原因是冲击振动、变载荷、温度变化等防松装置根据工作原理不同可分为利用摩擦防松、 直接锁住、破坏螺纹时关系 。3、螺纹的牙型有 三角形,矩形 ,梯形,锯齿形 。常用的联接螺纹是 右旋单头,牙型为 三角 形,公称直径是 外径,管螺纹的公称直径是 内径。根据用途分类, 三角 螺纹用于联接, 矩形、梯 互和锯齿形螺纹用于传动。4、 普通三角形螺纹与矩形螺纹比较,因具有较大的当量摩擦系数(或摩擦角)因而效率低,自锁性好,所以主要用于 联接八矩形螺纹与三角形螺纹比较,因摩擦系数较小,而具有较高的效率,所以主要适用于传动。5、 在普通机械中,共同完成一个联接任务的一组联接

10、螺栓,虽然受力不同,但材料与尺寸常相同,这主要上为了 减少所用螺栓规格,提高联接结构工艺性。6、 联接件与螺母或螺栓头相接触的支承面均应平整,这是为了避免产生附加的弯曲应力 。&由螺纹副效率公式7、 为了提高受轴向变载荷螺栓联接的疲劳强度,可采用提高予紧力,减少螺栓的刚度,提高被联接 件的刚度等措施。易自锁,故适用于 联接;而矩形螺纹与三角螺纹比较,因B较小效率就 高,故适用于 传动9、 螺纹副自锁的条件为 螺纹升角入w当量摩擦角 pv;单头螺纹比多头螺纹自锁性要好。10、 从螺纹使用要求上,联接螺纹要求有自锁 性能,而传动螺纹要求有较高的效率。11、 受拉螺栓联接是依靠联接件间的摩擦力来承受

11、外载荷:而受剪螺栓联接则依靠联接件孔壁和螺杆间 受剪切和挤压来承受外载荷。12、 受旋转力矩的螺栓组联接中,采用受拉螺栓时,是靠螺母拧紧后被联接件接触面之间的摩擦力传递外载,而螺栓的受力就是拧紧后的轴向拉伸 力。13、受旋转力矩的螺栓组联接受力分析中,采用受拉螺栓时,假设各螺栓受有相同预紧力,故在接合面处的 摩擦力 相等,并集中在螺栓中心处; 采用受剪螺栓时,假设各螺栓所受剪力与螺栓中心至底板的旋转中心的距离成正比。14、拧紧螺母时需要克服 螺纹力矩和螺母支承面力矩。15、 螺纹联接拧紧的目的是增强联接的刚性、紧密性 和 防松 能力。16、 在工作载荷予紧力不变条件下,为提高螺栓的疲劳强度应减

12、小 螺栓刚度,措施如 适当增大螺栓长度、减小螺栓直径、中空螺栓。被联接件刚度 增力口 。17、 为提高螺栓联接的疲劳强度,常设法减小应力幅,其措施减小螺栓 刚度或增大被联接件刚度。但将使联接中剩余预紧力减少,故应同时增大联接的预紧力。18、 螺栓联接中,在一定外载荷和剩余预紧力不变的条件下,要提高螺栓疲劳强度,应减小螺栓刚度或增 吐被联接件刚度;但预紧力将 加大,而螺栓总拉力 不变。19、在受预紧力和工作拉力的紧螺栓联接中,在预紧力不变时,在联接件间加刚性大的垫片,将使螺栓强 度提高,联接的紧密性 降低。20、 在受预紧力和工作拉力的紧螺栓联接中,螺栓所受总拉力等于工作载荷与剩余预紧 力之和;

13、也可等于一部分工作载荷与预紧力之和,这部分工作载荷的多少取决于螺栓和被联接件的刚度。21、 螺纹联接中,当被联接件之一厚度较大,并需经常拆卸的,可采用双头螺栓 联接;而不需经常拆卸 的,可采用螺钉联接。22、 与粗牙螺纹相比,在公称直径相同时,细牙螺纹的螺距 小,牙细、内径和中径较大,故升角 较小,因而较易满足自锁条件。23、 平键在静联接中的主要失效形式是挤压破坏和键的剪断。当单键联接强度不够时,可采用双键相隔180布置,其承载能力按单键时的1.5倍计算。原因是 两个平键所受的载荷分配不均匀。24、 平键联接常见的失效形式为 压溃和磨损,故对静联接需作 挤压强度计算;对动联接需作 耐磨性 计

14、算。25、 普通平键联接中,接触工作面为二侧面,其接触表面的强度属挤压强度;但在键横断面的宽度方向,还有剪切强度问题。26、 普通平键的工作面为 二侧面,键的上面与轮毂不接触,故轴与轮配合的对中性较好:键的断面尺 寸决定于轴的直径,长度决定于被联接件的 毂长。27、 普通平键是靠 二侧 面传递载荷;而楔键是靠 上下 面压紧而产生的 摩擦力 传递载荷,故联接的卫 土性较差。28、 半圆键的工作面是 两侧面,当用两个半圆键时在轴上应在轴的同一母线上布置。29、导向键的失效形式为 磨损,通常作联接的 耐磨性 计算。30、 根据齿形不同,花键联接可分为三角形、矩形、梯形 三种。31、 花键定心方式有

15、外径定心 ,侧面定心和 内径定心 三种。32、 渐开线花键联接的定心方式有齿形定心、外径定心两种。33、 在矩形花键联接中,当毂孔表面硬度不高时,宜用外径 定心:而当毂孔表面硬度较高时,宜用内径定心。第三篇1、 机械零件的失效是指由于某些原因不能正常工作:螺栓联接,皮带传动二者最典型的失效形式分别是联接松动、塑变及断裂,打滑和疲劳断裂 。2、 载荷系数 K=K aKvK a K 0,其中K a是考虑 齿对间载荷分配不均匀的影响;K ?是考虑 载荷在齿面接触 线上分布不均匀的影响。3、 齿轮动载荷系数的大小主要与下列因素有关:齿轮制造精度 、 圆周速度 、 齿面硬度 。4、 齿轮传动中的动载荷,

16、主要是由轮齿制造时的误差 和工作时轮齿的 变形 所引起。通常采用的 齿顶 修缘,可以有效地减小动载荷。5、 齿轮轮齿的齿顶修缘是减少动载荷的有效措施;齿向修形是减少齿宽上载荷不均的有效措施。6、 齿轮传动中动载荷系数随速度的增加而增加,随精度提高而 减小。轮齿采用修缘方法可有效的减 小动载荷。7、 齿轮传动的主要失效形式有轮齿折断、齿面点蚀、齿面的胶合、齿面的塑性变形、齿面的磨 损。8开式齿轮传动,其主要失效形式为断齿和磨损,一般只进行 弯曲 强度计算。9、 齿轮传动中,由于齿面上滑动摩擦的方向在主动轮上是离开 节点,而在从动轮上是 指向 节点,故点蚀通常发生在节线偏下部位,而胶合岀现在节线

17、上部位。10、 齿面点蚀通常发生在节线偏下部位,而胶合通常发生在节线上部位,齿面塑性变形(流动)岀现在节线处。11、 齿轮齿面点蚀通常发生在轮齿节线偏下 部位,胶合通常发生在节线上 部位,磨损通常发生在小齿轮的齿根部位。12、 齿轮弯曲强度计算中的齿形系数 Yf只与 齿形 有关,而与 模数 无关(不随 模数 改变而变化。);对 标准齿轮,Yf的大小(只与轮齿 齿数 有关,且成 反 比)随齿数的增加而 减小。13、 齿轮齿廓基本参数一定时, 齿形决定于齿轮的 齿 数和 变位 系数,齿形系数Yf就随前者的增加而 减 丄,随后者的增加而减小。14、 在闭式软齿面的齿轮传动中,轮齿的主要失效形式是点蚀

18、,所以其设计准则是先按接触强度计算, 再按弯曲 强度验算。15、 根据齿轮设计准则,对闭式齿轮传动,当齿面硬度小于HB350时,应按 齿面接触疲劳 强度设计, 按 齿根弯曲疲劳 强度校核,当齿面硬度大于 HB350时,应按 齿根弯曲疲劳 强度设计。16、 齿轮强度计算目前主要有 接触 和弯曲 二种方法。在闭式软齿面中一般先按接触计算,再按吕也验算;在硬齿面中一般先按弯曲 计算,再按 接触 验算。17、 一定扭矩下的齿轮传动中,作用在齿面的圆周力随啮合点变化而变化,法向力随啮合点变化而 不变 (=1)。18、 对齿轮接触强度计算时,常假设法向力Fn作用于 节点 处;而在齿轮弯曲强度计算时,则假设

19、全部载 荷作用于一对齿上,且载荷作用于 齿顶。19、 在齿轮接触疲劳强度计算时,通常假设把力作用在节点 处,这是因为在该点一般为单齿 啮合。20、 甲、乙两对直齿轮,已知甲对 m=3,Z1=20,Z2=40,乙对 m=2,Z1=40,Z2=80,其他条件完全相同, 如不计齿数变化对各系数影响,在接触强度上甲对低于 乙对,弯曲强度上甲对 高于 乙对。21、 为了减少齿轮在齿宽上载荷分布不均匀,应增加轴系刚度:在单齿非对称布置时,齿轮最好布置在 远离扭矩作用端。22齿轮对材料要求是:齿 要硬,齿芯 要韧。23、 齿轮及蜗轮的标准模数,对直齿圆柱齿轮为端面模数:对斜齿圆柱齿轮为 法面模数:对直齿圆锥

20、齿轮为大端模数;对蜗轮为 端面模数。而蜗杆传动中取蜗杆的轴面模数为标准模数。24、 直齿圆柱锥齿轮的标准模数为大端模数,直齿圆锥齿轮的强度计算是按齿宽中点处 的当量直齿圆柱齿轮进行的。25、斜齿圆柱齿轮传动的强度计算应按在节点处所作的法面当量直齿轮上进行:而直齿圆锥齿轮传动的 计算则是在齿宽 中点 处所作的 背锥 展开所得的当量直齿轮上进行。26、直齿圆锥齿轮中,大小齿轮的轴向力总是从 小端指向丄端,且一个轮轮齿的轴向力就是另一轮轮 齿的径向力。27、斜齿轮的螺旋角 B愈大将引起 轴向力增大,使轴承载荷增加一般 B角在 815之间。 合度,螺旋角,齿根应力集中对轮齿弯曲应力的影响。28、斜齿轮

21、弯曲应力计算公式中的 Yf,丫,丫 |,Ys分别反映了 齿廓形状,= 29、 普通蜗杆传动的正确啮合条件是蜗杆轴面模数等于蜗轮端面模数、蜗杆的轴面压力角等于蜗轮端面压力角 、 蜗杆的导程角 入=蜗轮螺旋角 B。30、 蜗杆传动中,包含蜗杆轴线的蜗轮旋转平面就叫作主平 面,对于阿基米德蜗杆传动,在该平面上就 相当于一对 齿轮 与 齿条 的啮合。31、 阿基米德蜗杆传动在主平面上相当于直齿条与渐开线齿轮 啮合,在主平面内 模数和压力角 为 标准值。32、 普通蜗杆传动中,其主平面内,蜗杆的齿廓为直线,蜗轮的齿廓为 渐开线,故在主平面内蜗杆与 蜗轮的啮合可看成是 齿条和齿轮的啮合。33、 蜗杆传动的

22、总数率由啮合效率、 考虑搅油损失的效率 和 轴承效率 组成,其中 啮合效率 最低。34、 闭式蜗杆传动中,蜗杆的头数越少,效率 越低,传动的发热量越大。35、 蜗杆的头数愈多,其啮合效率愈高,而蜗杆的导角愈小,则啮合效率愈低。36、 闭式蜗杆传动中,导角增大,效率增加。功率P 一定时,蜗杆的头数 越少,(效率越低),特性系 数q越大,传动的发热量将越大。37、蜗轮齿数应不小于 28齿,是为了 保证传动平稳性,齿数最大不大于80,因为蜗杆过长,使蜗杆刚 度减小 。38、 蜗杆传动变位后,被变位的是蜗轮尺寸,这时蜗杆节圆 有所改变,蜗轮节圆 与分度园重合。39、 在蜗杆传动中,由于啮合齿面间有很大

23、的相对滑动速度,故齿面易产生胶合和磨损破坏,因此,蜗 杆常采用的材料是钢,蜗轮常用材料是青铜。40、 蜗杆传动的主要失效形式是胶合 和磨损,因此要求蜗轮材料有优良的减摩性,和抗胶合性。41、 蜗杆传动中,由于齿面滑动速度较大,所以所用的材料组合首先要有良好的减摩性,此外还要有一 定的强度 。42、 蜗杆传动中,因蜗杆和蜗轮的圆周速度在齿面上的分量的方向相反,故齿面速度 较大,因而比较容易 发生胶合失效。43、 蜗轮材料为铸铁或铸铝铁青铜时,齿面的许用接触应力与滑动速度有关,与循环次数无关。44、 蜗杆特性系数q是为了限制 蜗轮滚刀 的数目而提岀的,对于小模数蜗杆,为了保证蜗杆有足够的刚度,应采

24、用较大的q值,但当蜗轮齿数一定时,q过大,将使蜗杆传动的效率 的降低。45、 蜗杆传动中,由于同一模数的 蜗杆 可以有许多不同直径,而切割蜗轮的滚刀必须与蜗杆 形状相当, 这就需要很多滚刀。为了限制蜗轮滚刀数量,所以对各种模数通常需要规定 2-3个蜗杆的 直径 与 模数 的 比值,这就是蜗杆特性系数的物理意义。46、 在一般机械传动布置中带传动宜布置在高速级,而链传动则宜布置在低速级。47、 在带传动中摩擦力的极限值 (或带的工作能力,或胶带所能传递的圆周力 )决定于带与带轮的摩擦系 数、张紧力F。、包角a等因素,当其他条件相同时 张紧力Fo和 包角a愈大,摩擦力极限值也愈 大。48、三角胶带

25、有0、A、B、C、D、E、F七种型号,其中_F_型号的剖面尺寸最大。三角带的内周 长度是标准值。49、三角胶带中,一定型号单根带的传递能力,随带轮直径的增加而增加,随带速的增加而 增加,随带长的增加而增加。50、 设计三角胶带传动时,在型号一定下,如需减少带的根数Z,通常可采用增加带轮的 直径或提高带 的速度。51、 标准三角胶带的楔角为 40,而带轮上的槽角因带的弯曲作用 (或为适应带在轮槽中的 弯曲变形) 而要求小于带的楔角。带因制造上的原因,标准中是以带的内周长度为标准,而计算时是以节线长 度为准。52、在带传动中,小带轮直径不宜过小是考虑:(1) 导致胶带与小带轮的包角减小,使胶带易打

26、滑;(2) 导致胶带进入带轮后产生大的弯曲变形,承受大的弯曲应力,易疲劳破坏等。53、 带传动中,包角a 1增加,带传动中有效圆周力 增加;中心距a增加,则有效圆周力 增加;传动比 增加,则有效圆周力减小。54、 在带传动中,小带轮直径小,占使包角 减小、带所受的弯曲应力增大,而使承载能力降低;而胶带速度v过大时,则由于带的离心力增大,从而使带所受的离心应力 增大,带与带轮间的正压力减小,而使承载能力降低。55、 带传动中,胶带速度 v过大,会因 离心力过大而降低传动能力;v过小,在一定功率下会因带的拉 乂过大而降低传动能力,所以带速不宜过高或过低。56、 带传动因具有 中间 件,所以适应中心

27、距较大的传动,它靠摩擦力工作,因有 弹性滑动 故不能 保持正确的传动比。57、 带传动的主要失效形式是胶带的打滑、疲劳破坏,因此带传动的设计依据是在不打滑情况下,具有一定的疲劳强度和寿命。58、 带传动中,表示接触弧上弹性滑动的滑动角,是随外载的增加而 增加,当该角达到整个 包角时, 就将发生打滑。59、 带传动中,产生弹性滑动时,带与带轮的接触弧上,静弧总是发生在带进入带轮的这一边上。当静弧趋向于零,滑动弧扩大到整个接触弧时,带就产生打滑。60、 带传动在材料和结构一定的条件下,二边的拉力差就是所传递的园周力,它等于带与轮面接触弧上的摩擦力。当工作阻力超过该力的极限值时就将发生打滑。61、

28、带传动的打滑是由 过载 引起;而弹性滑动是由接触弧上的摩擦力 使带两边发生不同的 拉伸变形 而引起。62、 带传动的弹性滑动是由于带与带轮间的摩擦力而使带轮两边胶带产生不同程度的拉力差,从而引起 带在带轮上的滑动,弹性滑动的后果是使从动轮圆周速度降低;传动效率下降等。63、 带传动中,当产生弹性滑动时,其滑动角等于带在带轮上的包角 时,胶带就发生打滑(打滑是由于过 载造成的),这种现象一般首先发生在 _ 带轮上。64、 增速传动的带传动中从动轮 上较易发生打滑现象。65、 带传动中的打滑是由 过载引起的全面滑动,它反映了带两边拉力的相差达到了接触弧上 摩擦力的 极限值也就是接触弧上的 滑动角达

29、到了全部包角。66、 套筒滚子链链轮齿形采用“三圆弧一直线”齿形,是因为它具有下列优点:(1)具有接触应力小(2)不易脱链(3) 便于加工。67、 链传动的瞬时传动比是变化的,只有当(1)两链轮的齿数相等和(2)主动链边长度又恰为链节矩的整数倍时,其值才恒定不变。68、 链轮齿数不宜过多或过少,齿数太少时,将增加速度的不均匀性 并引起动载荷:齿数过多时,在 链节磨损后,将引起 脱链现象。69、 在同样转速条件下,套筒滚子链TG158比TG254链速不均匀性 小,动载荷小。70、 在链传动中的主要作用力有工作拉力,离心拉力和垂度拉力,而垂度拉力取决于传动的布置方式及链在工作时允许的 垂度。71、

30、在套筒滚子链传动中引起动载荷的原因是:1)由于链速和从动轮角速度的变化,产牛加速度,而产牛动载荷;2).当链节讲入链轮的瞬间,链节与链轮齿以一定相对速度相啮合,产牛冲击,而引起动载荷。72、 在正常润滑的链传动中,其主要失效形式是疲劳断裂 :而当润滑不良时,其失效形式是链条的铰链磨损 ,严重时会引起 脱链现象;而在低速重载的链传动中,其失效形式是静力拉断。73、 链传动中链节销轴的中心,相对于 链轮 转动中心是不断变化的, 所以链条运动过程中总是存在平移和上下二个方面的 运动不均匀性。74、 链传动中,影响链传动动载荷的主要因素是链轮齿数Z1、 角速度 - 1和 链节距P 。75、 链传动中链

31、节距越 大 链轮齿数越 少,速度越 高,链条的运动不均匀性就越大,也就使传动中 的动载荷越大。76、 链传动中,链轮齿数过多,容易因链节磨损过度 而造成脱链;链轮齿数太少,会因运动的不均匀性增加而增加动载荷。为了便于链条的联接和磨损的均匀性,链节数最好取偶数,而轮齿数最好选 质数77、 在链传动中,链条的节距增加,则链条的强度 增加,传动中产生的动载荷 增加,故链节距选用的 原则是:在满足强度条件下,链节距应尽量小。78、 在链传动中,链条节距 p增加,则链条的强度提高,传动中产生的动载荷增大,故链节距选用原则是在满足传递功率的条件下尽量选用小的链节矩。第四篇1、 润滑油的粘度随 温度 和 压

32、力 而变化。在滑动轴承中可忽略压力 对粘度的影响。2、 润滑油的粘度是衡量内摩擦力大小的指标。3、 形成液体动压润滑的必要条件是两摩擦表面呈收敛楔形、两摩擦表面有一定相对速度、有足够多 的润滑油并有一定粘度。4、 向心滑动轴承建立液体动压润滑的过程可分为三个阶段:轴的起动阶段;不稳定润滑阶段;液体 动压润滑运行阶段 。5、 在液体动压润滑滑动轴承中,若其他条件均保持不变,而将载荷不断增加,则偏心距e增大,偏位角 9减小但达到一定时保持不变。6、 混合摩擦润滑轴承的主要失效形式是胶合和磨损,通过pw pl,pvw pvl和 vw vl三项计算 来控制失效。7、 在滑动轴承中,按摩擦状态分,可岀现

33、 干摩擦、边界摩擦、液体摩擦 和 混合摩擦 四种摩擦状态。 &混合摩擦润滑轴承的计算准则是维持 边界润滑。根据此准则,应验算 p 、_pv_、亠的数值,使其 不超过许用值。9、 混合摩擦润滑轴承设计中,工作面上压强p的验算是为了限制 磨损:压强与速度积pv的验算是为了限制 胶合;在速度较高时,还需验算速度v是为了限制 磨损。10、 向心滑动轴承的相对间隙通常是根据载荷和轴颈速度来进行选择。11、 剖分式滑动轴承的剖分面最好与载荷方向 近于垂直。当轴承的宽径比大于1.5时、可以采用 调心 轴 承。12、 在滑动轴承中,宽径比B/d大,由于 端洩 减少,使承载能力提高,但B/d过大,油循环流动减慢

34、,使轴承易 过热;相对间隙9小,由于 最小油膜厚度 减小,使承载能力提高,但 9过小,易导致 轴与轴 瓦表面直接接触,而使液体动压状态受到破坏。13、 液体动压径向滑动轴承的相对间隙书值选取与速度和载荷有关,通常重载低速轴承书值应选小值,这可使轴承的承载能力提高,此时选取屮值主要受hmin限制。14、液体动压润滑向心轴承设计中,宽径比 B/d增加,相对间隙心减小,可提高承载能力,但轴承中温 升将增加。15、 在液体动压径向滑动轴承中,当载荷增大时,若转速不变,则偏心率增大,最小油膜厚度hmin减 小。16、 液体动压润滑向心轴承中,轴承所受载荷愈大,最小油膜厚度hmin愈小,油温就愈高。17、

35、 在滑动轴承中,反映承载能力的承载量系数索氏数So是随偏心率的增加而 增加,随宽径比B/d的 增加而增加。18、 液体动压滑动轴承工作时,当载荷增大,转速不变,则轴颈偏心率增大,最小油膜厚度 减小:又当载荷不变,转速升高时,相对偏心率减小,最小油膜厚度增大。19、 在液体动压润滑向心轴承中,计算最小油膜厚度hmin的目的是 验算轴承能否获得液体动压润滑,若计算中发现hmin不够大,可通过增大相对间隙 来解决。20、 滚动轴承的额定寿命是指同一批轴承中90% 的轴承所能达到的寿命。滚动轴承的额定动载是指额定 寿命为10转时所能承受的载荷。21、 滚动轴承在基本额定动载荷C作用下,可以工作106r

36、而不发生点蚀,其可靠度为90% 。22、 滚动轴承的额定寿命是指一批相同的轴承,在相同的运转条件下,其中任一元件 在疲劳点蚀前所能 运转的总转数 。23、 滚动轴承密封的目的是阻止润滑剂的流失 ;防止灰尘、水分侵入 ,密封的方法按工作原理来分有接触式和非接触式 两大类。24、 滚动轴承的密封按密封原理可分为(1)接触式和(2)非接触式两大类,属于(1)类密封的有毡圈密封等,属于(2)类密封的有迷宫式密封等。25、 滚动轴承的e称为 轴向载荷的影响系数,轴承的e愈大则Y愈 小,表明轴向载荷对当量载荷的影 响愈减小。26、 当滚动轴承的转速极低或摆动时,轴承的主要损坏形式为塑性变形,这时需作静强度

37、计算,当转速较高时,其主要损坏形式为磨损或烧伤需对它作寿命计算及极限转速校核计算。27、 对于工作时回转的滚动轴承,主要失效形式是疲劳点蚀,故应进行寿命计算,而对工作时不转动、作摆动或转速低的轴承,主要失效形式是塑性变形,故应进行静强度计算。28、试写岀下列滚动轴承的类型和内径:3208:类型 圆锥滚子轴承 ,内径 40 mm;7203:类型 角接触球轴承,内径17 mm;29、 当只有径向载荷作用时7类及_3_类滚动轴承产生内部轴向力So30、 在径向载荷作用下,三、七 类流动轴承要产生内部轴向力,它的大小为径向载荷和 轴向 载荷影响系数e乘积。31、当一滚动轴承上只受径向力时,通常可选用第

38、 厶类轴承;同时受轴向力和径向力时,通常可靠选用第三类或第 七类轴承;只受轴向力,转速又较高时可选用第五类轴承。32、 由于滚动轴承是标准件,所以其内圈与轴的配合采用基孔制,外圈与孔的配合采用基轴制。33、 向心推力轴承中的轴向力计算,决定于轴上全部轴向 合力的指向,其“压紧”端轴承的轴向力等于除本身内部轴向力外,其余轴向力的合力 ,“放松”端轴承的轴向力等于它本身内部轴向 力。34、 在轴系中轴的位置靠轴承来固定,限制轴的轴向移动有两种方式:1)两端固定2) 一端固定一端游动 。第一种方式适用于工作温度不高的短轴:第二种方式适用于温度较高的长轴 。35、 对轴进行安全系数校核时,所选择的危险

39、剖面一般是指轴上有过渡园角、键槽或花键、过盈配合 时且合成弯矩及扭矩较大的剖面。36、轴上零件的周向定位常采用 3、花键、无键、汕等来实现。37、 轴上零件的轴向定位是采用轴肩,螺母,套筒,轴环等来实现。38、 根据所受载荷性质的不同,三类轴的区别为:转轴既承受扭矩又受弯矩;传动轴主要承受扭矩;心 轴基本上只承受弯矩。对称循环变应39、轴的疲劳强度校核计算时,对于一般的单向转动载荷方向不变的转轴,其弯曲应力按力考虑,而扭剪应力通常按脉动循环变应力考虑40、轴上受扭矩后产生的剪应力可能有不变的:脉动的:对称循环的三种情况,其对应的应力校正系数:也有所不同,当:=表明剪应力为脉动的L情况。koL4

40、1、对转轴按许用应力计算时,应力校正系数是根据扭矩性质而按(一计算。对于不变的扭矩,a取1式,对于对称循环的扭矩,则 a取卫42、 轴的许用应力计算中,按扭矩而定的应力校正系数 a,是表示不同性质的 扭矩向对称性质弯矩 转化的系数。43、 轴按许用弯曲应力的计算中,当量弯矩-J少 中,:的意义是不同性质的 扭矩 向对 称循环性质弯矩折算的应力校正系数。44、 对转轴按许用弯曲应力计算时,应力校正系数:的数值为:材料在 对称 循环下的许用弯曲应力与不同 性质的扭矩相应的许用弯曲应力的比值。45、 在轴的疲劳强度的安全系数校核时,应根据计算弯曲应力和扭转应力和应力集中等因素 两方面来选择危险剖面进

41、行校核。46、 轴的剖面尺寸愈 大轴与轮毂配合愈 紧,轴肩的圆角半径愈 小则综合影响系数(k Jd和(k)将愈大。47、 轴的疲劳强度校核是考虑了应力集中和表面状态、绝对尺寸影响后的精确校核。48、轴的强度计算方法有 许用扭应力、许用弯曲应力、安全系数校核等三种。机械设计简答题资料(个人押题)1. 机械设计准则:为了保证所设计的机械零件能安全、可靠地工作,在进行设计工作之前,应确定的准 则。其主要准则包括 :强度准则,刚度准则,寿命准则,耐磨性准则,震动性准则(P11 )2. 提高螺纹连接件强度的措施有哪些?( P58 ) 改善螺纹牙间载荷分配不均现象;降低影响螺栓疲劳强度的应力幅;减小应力集

42、中;避免附 加应力;采用合理的制造工艺3. 螺纹连接的防松(P43 )实质:防止螺纹副的相对转动防松的目的:防止连接松脱,保证连接安全可靠。分类:按工作原理可分为摩擦防松、机械防松以及铆冲防松等。防松装置:对顶螺母、弹簧垫圈、自锁螺母、止动垫圈、串联钢丝。4. 简述带传动的失效形式及设计准则(P92)带传动的主要失效形式为打滑和带的疲劳破坏,所以带传动的设计准则是:保证带传动不 打滑的前提下,充分发挥带的传动能力,并使传动带具有足够的疲劳强度和寿命。5. 弹性滑动与打滑 。(P90 )因带的弹性变形量的变化而引起带与带轮之间微量相对滑动的现象,称为带的弹性滑动。弹性滑动导致 从动轮的圆周速度低于主动轮的圆周速度,降低了传动效率,使带与带轮磨损增加和温度升高。弹性滑动是摩擦型带传动正常工作时 不可避免的固有特性。载荷增大到一定程度时,带与小带轮接触面间将发生显著的相对滑动,这种现象称为打滑。打滑将使带严重磨损和发热、从动轮转速急剧下降、带传动失效,所以打滑是必须避免的。但 在传动突然超载时,打滑却可以起到过载保护的作用,避免其他零件发生损坏。6. 带传动的优缺点 。(P85 )带传动的主要优点是:传动中心距比较大;传动带是弹性体,能缓冲、吸振,传动平稳噪声小; 结构简单,成本较低,装

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论