新概念思维训练-小学五年级第讲分数与循环小数-教师版_第1页
新概念思维训练-小学五年级第讲分数与循环小数-教师版_第2页
新概念思维训练-小学五年级第讲分数与循环小数-教师版_第3页
新概念思维训练-小学五年级第讲分数与循环小数-教师版_第4页
新概念思维训练-小学五年级第讲分数与循环小数-教师版_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第5讲分数与循环小数内容概述掌握分数与小数互相转化的方法,并在分数与循环小数混合运算中进行合理应用;通过分数的形式判断相应的小数类型;注意利用周期性性分析循环小数的小数部分。学会典型问题兴趣篇1 .把下列分数化为小数:3 13 13234(1) ,; (2) ,;4 8 259 11 335 5 76,22,902 3 4 7,13, 37答案:(1)0.75 1.625 0.52 (2) 0.20.270.12 (3) 0.83 0.2270.07(4 )0.2857140.23 0 796 0.108解析:(1)(2)(3)3 =3 + 4=0.75413一=13 + 8=1.625813

2、一=13 + 25=0.5225234=2+ 9= 0.2=3k11 = 0.27=4 + 33=0.129113355一一 7 一 =5 + 6=0.83=5+22=0.227= 0.07622902(4) 1=2 + 7=0.2857142 .把下列循环小数转化为分数:34 =313= 0.230769 一 =0.1081337(1)0.1, 0.4;(2)0.01, 0.35; (3)0.08,0.38.-1答案(1) 19359999(3)451840.4=一9-1解析 1) 0.1 = - 9,、1(2) 0.01= -99/、8(3) 0.08=90350.35=一9938-30.

3、38=35459090 183 .把下列循环小数转化为分数:0.7, 0.12, 0.123, 0.123答案:4334161333495解析:0.7=123-1 122610.123=990990495_ 12 _ 4_ 123 _ 41.一99133.1999 13334 .计算:(1)0.1 0.2 0.3; (2)0.2 0.3 0.4; (3)0.3 0.5 0.7;(4)0.1 0.12 0.123; (5)0.12 0.23.答案: 0.6 11.6 0.3560.354.1236解析:(1)0.1 0.2 0.3= =0.69 9992 34,(2)0.2 0.30.4=一一二

4、19993 5 76(3)0.3 0.5 0.7 = - =1 =1.6 9 9 990.1 0.12 0.123= 0.23 0.123= 0.3560.12 0.23 =0.354. 5. 0.12345 0.23451 0.34512 0.45123 0.51234.答案:1.6解析: a 0.12345 0.23451 0.34512 0.45123 0.51234 _12345 23451 34512 45123 51234 一 99999 99999 99999 99999 99999166665一 99999( 66666=199999二123= 1.6答案:0.650.756

5、.计算下列各式,并用小数表示计算结果:(1)1.86 0.351; (2)0.38 : 0.518.86 351 185 13 65解析:(1)原式=1x=x=0.6599 99999 37997 . 147273 八”(2)原式=父=0.7518 2718 1447.将算式0.3+0.60.3父0.6+0.3+0.6的计算结果用循环小数表示是多少?答案:1.27解析:0.3 0.6-0.3 0.6 0.3-:一 0.6= 1-2 19 2_ 23一 18 .= 1.2711118 .将算式-+ + +的计算结果用循环小数表示是多少?9 10 11 12答案:0.3853解析:原式=0.1 0

6、.1 0.09 0.083 =0.3853则正确9 .冬冬将1.23乘以一个数口时,把1.23误看成1.23,使乘积比正确结果减少 0. 3. 结果应该是多少?答案:111解析:由题意得:1.23a-1.23a =0.3 ,即:0.003a = 0.3 ,所以有:-3-a=-3 解得90010所以 1.23a =1.23x90 =11+23二2 卜90=111. 9010 .真分数a化成小数后,如果从小数点后第一位起连续若干个数字之和是2000. a应该7是多少?答案:a=2a解析:7化成小数很神奇,都是有 142857这六个数字组成,并循环的,而且六个数字从左到右的相对顺序位置是不变的-=0

7、.142857,2 =0.285714 , 3 =0.428571,4 =0.571428 , - =0.7l4285 , - =0.857142 .777777一个循环节的 6位数字之和是1+4 +2+8+5+7 =27 , 2000 + 27 =74。2 ,循环节的前几位数字之和是 2的只有0.285714 ,此时a就是2.拓展篇。 3 5 44 2 101.将下列分数化为小数:,8 6 9 7 133解析:3 =38 =0.37582=2 - 7 =0.2857147答案:0.375 0.83 4.80,28 5 741 0.76 9 203544=5-76 =0.8344 - 9 =

8、4.86910 10-13 =0.76923132 .把下列循环小数转化为分数:0.48, 0.1353, 3.1703, 6.36538461.答案:33413033至1 356但52解析:0.48481699331353410.1353 =9999 303八-1703-1八8513.1703 =3 =39990499536538461 -366.36538461. =6一99999900135c 36538425二6999999003. (1)把下面这些分数化为小数后,哪些是有限小数,.19二6一52哪些是纯循环小数,哪些是混循环小3 31 2 15 17 18 84 135 114,&q

9、uot;7-7 ,onQ,公。二,50 1 7 7 7 150 192 308 625 1111答案:能化成有限小数:能化成纯循环小数:217157784308111111能化成混循环小数:17331181354501 9 2625150解析:先化简分数,之后将分母分解质因数。如果分母只含有质因数2和5,那么这个分数一定能化成有限小数; 如果分母中只含有 2与5以外的质因数,那么这个分数一定能化成纯 循环小数;如果分母中既含有质因数2或5,又含有2与5以外的质因数,那么这个分数一定能化成混循环小数。(2)把下列分数化成循环小数:3 14 12 ,35 37 143答案:0.08571420.3

10、78 0.083916,,一3:一一解析:=0.0857142351414 -37 = 0.3783712一 二12143 =0.0839161434.计算:(1)0.02 0.31 0.45; (2)0.1 0.12 0.1234; (3.)0.12 0.53 0.69; (4)0.67 0.212 0.1 1102 0.答案:0.78 0.35671.35 1解析:(1) 0.02 +0.31 +0.45 =0.78 (2)0.1 0.12 0.1234 = 0.1111 0.1222 0.1234 =0.3567(3)0.12 0.53 0.69 =1.35(4)0.67 0.212 0

11、.111020 =15计算 (1)0.01 0.12 0.23 0.340.78 0.89;(2) 0.01 0.12 0.23 0.34 0.78 0.89答案:4112.4解析:(1)0.01 0.12 0.23 0.340.78 0.891223=+ + 99 99 9934.78 899999 991 89 999 2二4111(2)0.01 0.12 0.23 0.34 0.78 0.8911 21 31 71 81=+十十+90 90 90 90 90 90_ 1 11 21 31 71 81一90_ 216一 90=2.46.计算:(1)(4.2 -0.48) -2.05; (2

12、)0.132 (0.135 0.135).答案:(1) 1.81, (2)2988325解析:(1)(4.2 -0.48) :-2.05,,2 48、5=(4-) -2 9 9990c 73 , c 5=32 -9990370 9099 1852011(2)0.132 (0.135 0.135)= 0.132 0.2709=13226829999900二 2 9883 25-1.817.计算:(1.2169+0.18)。2.0981.(将结果表示为分数和小数两种形式)2答案: 0.6 3(1.2169 0.18) - 2.0981r2169 18、981=1+ 12 2、- 9999 99 J

13、 999913986 20979解析:二9999999923= 0.6-111118 .计算:1(结果用循环小数表示)3 5 7 9 11答案:0.65063492解析:原式=1 0.3 0.2 0.142857 0.1 0.09= 1.2 0.3 0.142857 0.1 0.09= 1.87821069 .将最简真分数 a化成小数后,从小数点后第一位开始的连续n位数之和为9006, a与n7分别为多少?答案:a=1 n=2002 或 a=2 n=2001 a解析:7化成的小数都是有 142857这六个数字组成,并循环的,而且六个数字从左到右的相对顺序位置是不变的1 =0.142857,2

14、=0.285714 , 3 =0.428571,4 =0.571428 , - =0.714285 , - =0.857142 .777777一个循环节的6位数字之和是1 十4十2+8+5 + 7 = 27 , 9006 +27 =333 15,循环节的前几位数字之和是 15,在 1 =0.142857 中,1+4+2+8=15,那么 a 就是 1,此时 n=333 X 6+4=2002 , 7在 2 =0.285714 中,2+8+5=15,那么 a 就是 2,此日n=333X 6+3=2001.所以,a=1 n=2002 或 7a=2 n=2001 。10 .冬冬写了一个错误的不等式:0.

15、2008 > 0.2008 > 0.2008 > 0.2008.请给式子中每个小数都添加循环点,使不等号成立.请问:添加循环点后这四个数中最大数与最小数的和等于多少?解析:把0.2008添加循环点,可以变成4个循环小数:0.2008, 0.2008, 0.2008, 0.2008. 0.2008=0.20082008 川川 ,0.2008 =0.2008008川 I. ,0.2008 =0.200808| 11| ,0.2008 =0.200888川IH .比较小数点后第 5、6、7 位,可知 0.2008 >0.2008 a0.2008a0.20080.2008 0.

16、2008 =0.40168911 . (1)色和 能化成小数后,两个循环小数的小数点后第2008位数字的和是多少?101101(2)把1325和_683化成小数后,两个循环小数的小数点后第2008位数字的和是多少?20082008答案(1)9(2) 9130.128710188(1)解析:=0.87121012008 - 4 = 5022 7=91325683一,一、,工,(2)解析: 十=1 而1 = 0.9 ,所以这两个数小数点对应数字之和都为9.2008 200812.冬冬将0.321乘以一个数a时,看丢了一个循环点,使得乘积比正确结果减少了0.03正确结果应该是多少?-4答案:96 1

17、1318 2891-1-1解析:0.321-0.321 =-=,乘数少了,乘积少了 0.03= 说明990 900990099003331810604a=300, 0.321 300300969991111超越篇1 .将循环小数0.027与0.179672相乘,取近似值,要求保留一百位小数.该近似值的最后一位小数是多少?答案:9解析:先化成分数,相乘,分子分母约分,再化成小数。0 0 27X 0 10 79672- 27 x 179672 _ 1 x 179672 _ 4856999 999999 37 999999 999999004856六个数字循环,100 + 6=16-4,第100位是

18、8,后面的5四舍五入进1,进位 后第100位(近似值的最后一位)是9。一-、口 口 口、»一口 ,人、2 .有一个算式+ +% 1.37 ,算式左边的方格中都是整数,右边的结果为四舍五入25 11到百分位后的近似值,那么方格中填人的三个数分别是多少?答案:1 3 3解析:分母为2和5的分数都是一位小数,因此百分位的7是分母是11的分数产生的,只占 3口上口r士 13133有0 0.27 + =1.1只有一十 =1.1,因此一+ + 之 1.3711252 52 5 113 .划去0.5738367981的小数点后的六个数字,再添上表示循环节的两个圆点,可以得到一个循环小数.这样的小数

19、中最大的数为多少?最小的数为多少?答案:最大0.8981最小0.3361解析:要使9为小数点后第一位, 须划去七个数字,因此小数点后第一位最大是 8,划去573 和367这六个数字后小数点后第二位是9,最大,为使循环小数最大,须把9设为循环节的第一位,从而最大的数是 0.8981。显然不是小数点后前三位数字,因此小数点后第一位最小是3,第二位最小是 3,第三位最小是 6,为使循环小数最小,须把第一个圆点添在第一 个3上,即最小的数是 0.3361。4 .给小数0.2138045976添加表示循环节的两个圆点,得到一个循环小数,要使得这个循环小数的小数点后第 100位数字是7,应该怎么添加?答案

20、:0.2138045976解析:第100位是7,那么第101位是6,由于前面已经占用了 10位,所以后面的完整循环节有101-10=91位,则每个循环节的数字个数是91的约数,显然在2到10的范围内只有7才是91的约数,所以循环节数字的个数是7,因此,应该标在数字 8和6上5 .有两个循环小数 a和b, a的循环节有3位,b的循环节有6位.这两个数之和的循环节 最多有多少位?最少有多少位?答案:最多有6位,最少有2位解析:两个循环小数的和或差的循环节的位数最多是这两个循环节位数的最小公倍数。a的小数部分化为分数后为A999000b的小数部分化为分数后为B99999900.0999999=999X 1001, a+b 的小数部分即AB _ C99900.0 999999000 - 99999900.0最多有6位,最少有2位,此时c为10101的倍数6 .只用数字1、2、3各一次可以组成很多不含重复数字的循环小数(循环点和小数点可以任意添加,例如1.32, 12.3, 3.12) .这些小数的总和是多少?答案:1601解析:1.23+1.32 +2.13+2.31 +3.12 +3.21 =13

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论