




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上二次函数复习提纲知识要点梳理知识点一:二次函数的定义一般地,如果是常数,那么叫做的二次函数.知识点二:二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ;,其中;.几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0,)(,0)(,)()2.抛物线的三要素: 开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用(1)决定开口方向及开口大小,这
2、与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:时,对称轴为轴;(即、同号)时,对称轴在轴左侧;(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置. 当时,抛物线与轴有且只有一个交点(0,): ,抛物线经过原点; ,与轴交于正半轴;,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .4、二次函数图象的平移规律任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:左加右减,上加下减,具体平移方法如下表所示。5.用待定系数法求二次函数的解析式(1)一般式:.已知图象上三点或三对、的值,通常选择一般式.
3、(2)顶点式:.已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: .(由此得根与系数的关系!)知识点三:二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察
4、到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解知识点四:利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.方法指导:1.求抛物线的顶点、对称轴
5、的方法(1)公式法:,顶点是,对称轴是直线.(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相同两点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.2.直线与抛物线的交点(1)轴与抛物线得交点为(0,).(2)与轴平行的直线与抛物线有且只有一个交点(,).(3)抛物线与轴的交点 二次函数的图象与轴的两个交点的横坐标、,是对应一元二次方程 的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式 判定: 有两个交点抛物线与轴相交; 有一个交点(顶点在轴上)抛物线与轴相切; 没有交点抛物线与轴相离.(4)平行于轴的直线与抛物线的交点 同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.次函数的图象与二次函数的图象的交点,由方程 组的解的数目来确定:方程组有两组不同的解时与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焦作市社区工作者招聘真题2024
- 客户获取中的体验营销策略-全面剖析
- 无线内置物联网通信协议分析-全面剖析
- 《高粱在洋酒酿造中的探索实践与创新应用策略》论文
- 2025年大学辅导员心理危机干预心理危机干预技能试题试卷
- 2025-2030全球及中国汽车双叉骨悬架系统行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国替代燃料汽车(AFV)行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 湖泊藻类生态调控机制研究-全面剖析
- 2025-2030全球及中国废旧金属回收行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国安全运营软件行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 华为IAD132E(T)开局指导书
- 2024年415全民国家安全教育日知识竞赛测试题库
- (2025)二十大知识竞赛题库(含答案)
- 2025年华北电力大学辅导员及其他岗位招考聘用54人高频重点提升(共500题)附带答案详解
- 2022《信访工作条例》学习课件
- 尼康D3200中文说明书(完整版)
- 2025年高考政治一轮复习知识清单选择性必修一《当代国际政治与经济》重难点知识
- 儿童青少年肥胖食养指南(2024年版)
- 2023年高考真题-历史(辽宁卷) 含答案
- 2024年湖北省武汉市中考英语真题(含解析)
- 诺如病毒课件教学课件
评论
0/150
提交评论