版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、古典概型中研究的几类基本问题:抛硬币、掷骰(tóu)子、摸球、取数等随机试验,在概率问题的研究中,有着十分重要的意义.一方面,这些随机试验,是人们从大量的随机现象中筛选出来的理想化的概率模型.它们的内容生动形象,结构清楚明确,富有直观性和典型性,便于深入浅出地反映事物的本质,揭示事物的规律.另一方面,这种模型化的处理方法,思想活泼,应用广泛,具有极大的普遍性,不少复杂问题的解决,常常可以归结为某种简单的模型.因此,有目的地考察并掌握若干常见的概率模型,有助于我们举一反三,触类旁通,丰富解题的技能和技巧,从根本上提高解答概率题的能力.本部分主要讨论古典概率中的四类基本问题(摸球问题、分
2、球入盒问题、随机取数问题和选票问题),给出它们的一般解法,指出它们的典型意义,介绍它们的常见应用.一、摸球问题例1袋中有个白球,个黑球:(1)从中任取出ab个(a,bN,a,b,试求所取出的球恰有a个白球和b个黑球的概率;(2)从中陆续取出3个球(不返回),求3个球依次为“黑白黑”概率;(3)逐一把球取出(不返回),直至留在袋中的球都是同一种颜色为止,求最后是白球留在袋中的概率.思考方法 这里的三个小题,摸球的方式各不相同,必须在各自的样本空间中分别进行处理.(1)中的每一个样本点,对应着从+个球中任取a+b个球的一种取法,无需考虑顺序,属于组合问题.(2)中的每一个样本点,对应着从+个球中依
3、次取出三个球的一种取法,需要考虑先后次序,属于排列问题.(3)中事件的有利场合(摸剩白球)包含了种不同情形:摸剩个白球,-1个白球,1个白球.因此,必须对各种情形分别加以考虑.解(1)设A1表示事件“所取的a+b个球中恰有a个白球和b个黑球”.从+个球中任意摸出a+b个,有种不同取法,此即样本空间所包含的样本点总数.而事件A1所包含的样本点数,相当于从个白球中任取a个,从个黑球中任取b个的取法种数,共种.所以P(A1)=(2)设A2表示事件“取出的3个球依次为黑白黑”.从+个球中依次任取3个,有种取法,此即样本点总数.对于有利场合,第一个和第三个黑球可在个黑球中依次取得,有种取法,第二个白球可
4、在个白球中任取,有种取法.因此,A2所包含的样本点数为.于是P(A2)=(3)袋中只剩白球时(设此事件为A3),取出的球必为个黑球,i个白球(i=0,1,-1).用Bi表示事件“取出个黑球,i个白球,袋中留下的全是白球”(i=0,1,-1),则事件B0,B1,B-1,必两两互不相容,且A3=B0+B1+B-1依概率的有限可加性,有P(A3)=P(B0)+P(B1)+P(B2)+ +P(B-1)依事件Bi的含义,对于确定的i,它的样本空间就是从+个球中任取i+个球的排列.所以,样本点总数为.注意到i+个球取出后,留在袋中的全是白球,因而在这i+个球中,最后取出的一个应是黑球.这样,事件Bi的有利
5、场合,就是i+-1个球的全排列(个黑球中扣除1个,以保证最后取出的一个必为黑球).显然,i个白球可从个白球中取得,有种取法;-1个黑球可从个黑球中取得,有种取法,从而事件Bi所包含的样本点数为.于是P(Bi)= =把诸P(Bi)的值代入(1)式,并注意到+即得P(A3)= =评注 如果把题中的“白球”、“黑球”换为“正品”、“次品”或“甲物”、“乙物”等等,我们就可以得到各种各样的“摸球问题”.为了让读者对此有深切的体会,我们再来看下面的例子:(1)一批灯泡40只,其中3只是坏的,从中任取5只检查.问: 5只都是好的概率为多少? 5只中有2只坏的概率为多少? (答案:;)(2)在相应地写有2,
6、4,6,7,8,11,12及13的8张相同的卡片中,任意取出2张,求由所取得的两个数构成的分数为可约的概率. (答案:)(3)从一副扑克牌(52张)中任取6张,求得3张红色的牌和三张黑色的牌的概率. (答案:)(4)用火车运载两类产品,甲类n件,乙类m件.有消息证实,在路途中有2件产品损坏.求损坏的是不同产品的概率. (答案:)(5)一个班级有2n个男生和2n个女生,把全班学生任意地分成人数相等的两组,求每组中男女生人数相等的概率. (答案:)(6)从数1,2,n中任取两数,求所取两数之和和偶数的概率. (答案:当n为偶数时,p=;当n为奇数时,p=)不难发现,上述各个问题的解决,都可以归结为
7、摸球问题(例1(1).我们说摸球问题具有典型意义,原因也正在于此.,二、分球入盒问题例2把n个球以同样的概率分配到(n)个盒子中的每一个中去,试求下列各事件的概率:(1):某指定n个盒子中各有一球;(2):恰有n个盒子,其中各有一球;(3):某指定盒子中恰有m(mn)个球.思考方法解答本题时,要发掘“n个球以同样的概率分配到个盒子中的每一个中去”一语的含义.这句话意思是说,每一个球,被分配到任意一个盒子中去是等可能的;也就是说每一个球各有种不同的去向.解因为n个球中的每一个球,都以同样的概率进入个盒子中的任意一个,所以样本点总数为Nn.(1)n个球分别分配到个预先指定的盒子中去,相当于n个球的
8、全排列,因此事件所包含的样本点数为An,于是P(A)=(2)对于事件,个盒子可自个盒子中任意选取,有种选法,因而事件包含个样本点,于是P(B)=.(8)事件中的个球,可以从n个球中任意选取有种选法,其余的n-m个球可以任意分配到另外-1个盒子中去,有(N-1)n-m种分配法.因而事件包含个样本点.这样P(C)=.评注 不难发现当n和确定时P(C)只依赖于m.如果把P(C)记作Pm,依二项式定理有.上述等式的概率意义是十分明显的.就是对于某个指定的盒子来说,进入盒子中的球数不外是0,1,.,n;从而这n+1种情形的和事件为必然事件,其概率必为1.这个问题实质上就是贝努利(Bernoulli)概型
9、.n个球在个盒子中的分布,是一种理想化的概率模型,可用以描述许多直观背景很不相同的随机试验.为了阐明这一点,我们列举一些貌异质同的试验:(1)生日.个人的生日的可能情形,相当于个球放入=365个盒子中的不同排列(假定一年有365天).(2)性别.个人的性别分布,相当于把个球放入=2个盒子中.(3)意外事件.如果把个意外事件按其发生在星期几来分类,相当于个球放入=7个盒子中.(4)掷骰子.掷颗骰子的可能结果,相当于把个球放入=6个盒子中.(5)质点入格.个质点落于个格子中的可能情形,相当于个球分入个盒子中.(6)旅客下站.一列火车中有名旅客,它在个站上都停.旅客下站的各种能情形,相当于n个球分到
10、个盒子中的各种情形.(7)住房分配.n个人被分配到个房间中去住,则人相当于球,房间相当于盒子.(8)印刷错误.个印刷错误在一本具有页的书中的一切可能的分布,相当于个球放入个盒子中的一切可能分布(必须小于每一页的字数).从上面所列举的部分试验,我们不难体会分球入盒的模型的意义.因而使例2成为古典概率中的典型问题之一,为一类实际问题的求解,提供了有效的途径.作为练习,读者可利用本题的思想方法,解答下列各题:(1)同时掷4颗质量均匀的骰子,求出现完全不相同的点数的概率. (答案: )(2)设一个人的生日在星期几是等可能的,求6个人的生日都集中在一星期中任意两天但不是都在同一天的概率. (答案:)(3
11、)有n个质点,每个质点都等可能地落于()个格子中的每一个.试求每一格子至多含一点的概率. (答案:)(4)设有n个人,每个人都等可能地被分配到n个房间中的任一间去住.求恰有一个空房间的概率. (答案:)三、随机取数问题例3从1,2,10这十个数中任取一个,假定各个数都以同样的概率被取中,取后还原,先后取出7个数,试求下列各事件的概率:(1)A1:7个数全不相同;(2)A2:不含10与1;(3)A3:10恰好出现两次;(4)A4:10至少出现两次;(5)A5:取到的最大数恰好为6思考方法 本题所及的随机试验,就取样方法来说,属于返回取样.也就是说,把某数取出后还原,下次仍有同样的可能再取到这个数
12、.注意到这一特点,运用上节介绍的思想方法,原题就不难得解.解 依题设样本空间就是10个相异元素允许重复的7元排列.所以样本点总数为107(1)事件A1,要求所取的7个数是互不相同的,考虑到各个数取出时有先后顺序之分,所以有利场合相当于从10个相异元素里每次取出7个相异元素的排列.因此,A1所包含的样本点数为.于是P(A1)=.(2)事件A2:先后取出的7个数中不含10与1,所以,这7个数只能从2,3,4,5,6,7,8,9这8个数中取得.注意到实验属于有返回取样,则A2的有利场合,相当于8个相异元素允许重复的7元排列.于是,A2所包含的样本点数为87,有 P(A2)=.(3)事件A3中出现的两
13、次10,可以是7次取数中的任意两次,有种取法,其余的5次,每次可以取剩下的9个数中的任一个,共有95种取法.于是A3的有利场合为.由此P(A3)=.(4)事件A4是六个两两互不相容事件“10恰好出现k次”(k=2,3,4,5,6,7)的和,因此P(A4)=.也可以先考察A4的逆事件.这里是事件“10恰好出现一次或一次也不出现”显然P()=.(5)事件A5的有利场合,就是6个相异元素(1,2,3,4,5,6)允许重复的最大数恰好为6的7元排列.这种排列可以分为6出现1次,2次,3次,4次,5次,6次,7次等七类,显然,它们的排列数依次是,于是P(A5)=.事件A5的有利场合数也可以这样来考虑:最
14、大数字不大于6的7元重复排列,有67种,它可以分为两类,一类是最大数恰好是6的7元重复排列;一类是最大数小于6的7元重复排列.注意到第二类重复排列有57种,则第一类重复排列有67-57种.于是P(A5)=.评注 例3是一个比较典型的返回取样问题,解题的思想方法,对于同类问题具有指导意义.但决不能把它作为现成的公式乱套,即使同是随机取数问题,也须斟酌题意灵活运用.例如,下面的四个问题,表面看结构相仿,实质上差别较大,读者不妨一试,以资鉴别.(1)电话号码有五个数字组成,求电话号码由完全不同的数字组成的概率. (答案:)(2)某单位印刷的一种单据,编号由五个数字组成,从00001开始,求任取其中一
15、张,编号由完全不同的数组成的概率. (答案:)(3)在0至9这十个数字中,不放回地任取5个,求能排成由完全不同的数字组成的五位数的概率. (答案:)(4)在0至9这十个数字中,有放回地任取5个,求能排成由完全不同的数字组成的6位数的概率. (答案:)四、选票问题例4假定在一次选举中,候选人甲得a票,候选人乙得b票,且ab,试求下列事件的概率:(1):在计票过程中,甲、乙的票数在某个时刻相等;(2):在计票过程中,甲的票数总比乙的票数多;(3):在计票过程中,甲的票数总不落后于乙.思考方法 本题结构比较复杂,不大容易入手.为了便于分析,我们不妨考虑一个简化问题,比如,令a=3,b=2这时,样本空
16、间就是3张属于甲的选票和2张属于乙的选票的全排列.显然这是一个不尽相异元素的全排列问题,其排列种数为如果把样本点具体写出来,就是乙乙甲甲甲,乙甲乙甲甲,乙甲甲乙甲,乙甲甲甲乙,甲甲乙乙甲,甲乙乙甲甲,甲乙甲乙甲,甲乙甲甲乙,甲甲乙甲乙,甲甲甲乙乙.为了直观地反映事件,的情形,我们可以利用平面坐标的思想,建立样本点和平面折线的对应关系.具体地说,以横轴表示计票张数,纵轴表示计票过程中甲、乙两候选人所得票数之差;先依样本点在计票过程中的情形,在坐标平面上确定点的位置,再用线段把各点连成折线.如图3-31所示,点(0,0)表示计票起点;点(1,-1)表示第一张选票是属于乙的,甲、乙票数之差等于-1;
17、点(2,-2)表示第二张选票也是属于乙的,这时共计了两张选票,甲、乙票数之差等于-2;点(3,-1)表示第三张选票是属于甲的,这时共计了三张选票,甲、乙票数之差等于-1;点(4,0)表示第四张选票是属于甲的,这时共计了四张选票,甲、乙票数之差等于0,即两人得票数相等;点(5,1)表示第五张选票也是属于甲的,这时共计了五张选票,甲、乙票数之差等于1.这样,图3-31的折线就形象地刻划了样本点“乙乙甲甲甲”在计票过程中的情形.同样,图3-32至10的各条折线,刻划了其余九个样本点在计票过程中的情形.经过上述处理,我们从图3-3就可以形象地看到:事件包含的样本点,它们所对应的折线,除起点外,与横轴至
18、少有一个公共点;事件包含的样本点,它们所对应的折线,除起点外,图形全在横轴的上方,与横轴没有其余的公共点;事件的样本点,它们所对应的折线,在横轴的上方,且与横轴允许有其余的公共点.这样,从图中容易得到,的样本点数为8,的样本点数为2,的样本点数为5于是P(A)=8/10=0.8; P(B)=2/10=0.2; P(C)=5/10=0.5.分析到这里,简化问题得以解决.为了能用于指导原题的解答,我们还需对简化问题作进一步的考察.细酌题中的各个事件,从图3-3可以得到以下结论:1.在计票过程中,甲的票数总比乙少的情形是不可能发生的.事实上,如果甲的票数总比乙少,那么甲的得票总数将比乙少,与条件ab
19、相矛盾.这就表明,事件与必为互逆事件.2.事件的样本点,对应于图3-39、10所示的折线.这两个样本点的共同特点是:甲先得一票;如果把这一票扣除,那么余下的四票就组成甲得2票、乙得2票时,事件“在计票过程中,甲的票数总不落后于乙”的样本点.这样,我们就可把事件与事件联系起来,相互转化.3.从1、2可知,解题的关键,在于推求P(A);而计算P(A)的关键,又在于确定的样本点数.从图3-3不难看出,A的样本点可以分为两类:一类是第一张选票属于乙的;另一类是第一张选票属于甲的.前一类样本点数,相当于3张属于甲的选票和2-1=1张属于乙的选票的全排列数:后一类样本点数,似难直接推算.但从图3-3可以看
20、出.如果把这一类样本点所对应的折线,从起点到首次触到横轴的部分,对横轴作一次反射,那么就得到第一类样本点(参考图3314与58.这就是说,两类样本点在所作的反射下是一一对应的.所以,第二类样本点数等于第一类样本点数.分析到这里,原题就不难解出了.解 依题设,样本空间就是a张屋于甲的选票与b张属于乙的选票的全排列.这是一个不尽相异元素的排列问题,排列种数为,这就是样本点的总数.(1)为了计算A的样本点数.我们把A的每个样本点表示成形如图33的折线,横标为计票张数,纵标为甲、乙票数之差;斜率为1的线段表示计票过程中甲得票,斜率为-1的线段表示计票过程中乙得票.这样,可以把A的样本点分成两类:第一类
21、为第一张选票属于乙的,在这种场合,于某个时刻必然会出现甲、乙两人的票数相等(因为a>b);第二类为第一张选票属于甲,且在某时刻甲、乙两人的票数相等.这里,第一类样本点数,相当于a张属于甲的选票与b-1张属于乙的选票的全排列数,有种.对于第二类样本点的任一折线,从起点到首次触到横轴的部分对横轴作一次反射,其余部分保持不变,就得到第一类样本点的一条折线(图3-4).不难证明,用这样的方法可以建立起第一类与第二类样本点之间的一一对应关系.所以,第二类样本点数也是这样,事件的样本点数为于是P(A)=(2)在ab的条件下,事件是事件的逆事件,所以P(B)=1-P(A)=1-.(3)为了方便起见,我们用Ca,b记事件“在计票过程中,甲的票数总不落后于乙”;用Ba,b记事件“在计票过程中,甲的票数总比乙多”(足码a,b表示在计票过程中一共有ab张选票,其中a张属于甲的,b张属于乙的).容易看出,Ba,b的样本点,它们所对应的折线,全在横轴的上方.所以,如果
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度绩效评估合同:电气项目团队绩效评估服务合同2篇
- 二零二四年度科研协作合同标的为共同研究开发协议
- 2024年度银行客户礼品采购合同
- 地下车位转让合同3篇
- 2024版商品房预售合同范本
- 二零二四年度股权转让合同:甲方将其持有的乙方公司股权转让给丙方
- 二零二四年度烤肠技术合作与场地租赁合同
- 2024年度水利工程电子监控系统供应合同2篇
- 二零二四年度原材料采购合同(04版)
- 2024年度采购合同标的供应商选择与采购数量
- 开票税点自动计算器
- 水工建筑物练习题库(附答案)
- 实践报告南京红色之旅社会实践报告
- 2024年重大事故隐患判定标准考核试题
- 幼儿园小班幼儿学情分析报告
- 小学课外阅读案例分析
- 土木工程案例分析
- 起重机维护保养记录表
- 《煤矿重大危险源评估报告》
- 特种设备使用单位日管控、周排查、月调度示范表
- 香文化与养生智慧树知到期末考试答案章节答案2024年浙江农林大学
评论
0/150
提交评论