直线与圆知识点总结及例题_第1页
直线与圆知识点总结及例题_第2页
直线与圆知识点总结及例题_第3页
直线与圆知识点总结及例题_第4页
直线与圆知识点总结及例题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、直线和圆知识点总结1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x轴相交的直线1,如果把x轴绕着交点按逆时针方向转到和直线1重合时所转的最小正角记为,那么就叫做直线的倾斜角。当直线1与X轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围0,。如(1)直线xcosM3y20的倾斜角的范围是(答:0,U5,);66倾斜角的取值范围是0°&<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示.倾斜角是90。的直线没有斜率.(2)过点P(v3,1),Q(0,m)的直线的倾斜角的范围_,2_,那么m值的范围是33(答

2、:m2或m4)2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的余率k,即k=tan(W90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点(%,h)、P2(X2,y2)的直线的斜率为ky-y2X1X2;(3)直线的方跑X1x2,一r向量a(1,k),直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线:kABkBC。如(1)两条直线钟率相等是这两条直线平行的条件(答:既不充分也不必要);(2)实数X,y满足3x2y50(1x3),则上的最大值、最小x值分另I为(答:2,1)33、直线的方程:(1)点斜式:已知直

3、线过点(X0,y0)斜率为k,则直线方程为yy0k(xx0),它不包括垂直于x轴的直线。直线的斜率k0时,直线方程为yy1;当直线的斜率k不存在时,不能用点斜式求它的方程,这时的直线方程为xXi.(2)斜截式:已知直线在y轴上的截距为b和斜率k,则直线方程为ykxb,它不包括垂直于x轴的直线。(3)两点式:已知直线经过F(x1,y1)>P2(x2,y2)两点,则直线方程为yy1XX1,它不包括垂直于坐标轴的直线。若要包含倾斜角为00或900的y2y1X2X1直线,两点式应变为(yy1)(x2X1)(xX1)(y2y1)的形式.(4)截距式:已知直线在x轴和y轴上的截距为a,b,则直线方程

4、为-21,它不包括垂直于坐标轴的直线ab和过原点的直线。(5)一般式:任何直线均可写成AxByC0(A,B不同日寸为0)的形式。如(1)经过点(2,1)且方向向量为v=(1,J3)的直线的点斜式方程是(答:y1向x2);(2)直线阿2)x(2m1)y(3m4)0,不管m怎样变化恒过点(答:(1,2);(3)若曲线ya|x|与yxa(a0)有两个公共点,则a的取值范围是(答:a1)提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率

5、为1或直线过原点;直线两截距绝对值相等直线的斜率为1或直线过原点。如过点A(1,4),且纵横截距的绝对值相等的直线共有一条(答:3)4.设直线方程的一些常用技巧:(1)知直线纵截距b,常设其方程为ykxb;(2)知直线横截距x0,常设其方程为xmyx0(它不适用于斜率为0的直线);(3)知直线过点(x0,y0),当斜率k存在时,常设其方程为yk(xx°)y°,当斜率k不存在时,则其方程为xx0;(4)与直线l:AxByC0平行的直线可表示为AxByC10;(5)与直线l:AxByC0垂直的直线可表示为BxAyC10.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用

6、待定系数法求解。5、点到直线的距离及两平行直线间的距离:1|AXoBy。C(1)点P(x0,y0)到直线AxByC0的距离d0:;,A2B2(2)两平行线|1小* ByC1 0,l2 : Ax By CC1 C20间的距离为d ) 01A2 B'6、直线|1:AxB1yC10与直线l2:A2xB2yC20的位置关系:(1)平行AB2A2B10(斜率)且B1C2B2cl0(在y轴上截距);(2)相交A1B2A2B10;(3)重合A1B2A2B10且B1c2B2cl0。AB1C1A1B1A1B1C1提醒:(1)、,仅是两直线平行、相交、重A2B2C2A2B2A2B2C2合的充分不必要条件!

7、为什么?(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线;(3)直线11:A1xByC10与直线l2:A2XB2yC20垂直AA2BB20。如(1)设直线l1:xmy60和l2:(m2)x3y2m0,当m=时l1/l2;当m=时1112;当m时I1与12相交;当m=时I1与I2重合(答:11;m3且m1;3);(2)已知直线l的万程为3x4y120,则与l平行,且过点(一1,3)的直线方程是(答:3x4y90);(3)两条直线axy40与xy20相交于第一象限,则实数a的取值范围是(答:1a2);(4)设a,b,c分别是AB

8、C中/A、/B、/C所对边的边长,则直线sinAgxayc0与bxsinBgysinC0的位置关系是(答:垂直);(5)已知点P(xi,y1)是直线l:f(x,y)0上一点,P2(x2,y2)是直线l外一点,则方程f(x,y)f(x1,yi)f(X2,y2)=0所表示的直线与l的关系是(答:平行);(6)直线l过点(1,0),且被两平行直线3xy60和3xy30所截得的线段长为9,则直线l的方程是(答:4x3y40和x1)7、特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;(2)当另一条直线的斜率

9、为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.8、对称(中心对称和轴对称)问题一一代入法:如(1)已知点M(a,b)与点N关于x轴对称,点P与点N关于y轴对称,点Q与点P关于直线xy0对称,则点Q的坐标为(答:(b,a);(3)点A(4,5)关于直线l的对称点为B(2,7),则l的方程是(答:y=3x+3);(4)已知一束光线通过点A(3,5),经直线l:3x4y+4=0反射。如果反射光线通过点B(2,15),则反射光线所在直线的方程是(答:18x+y510);(5)已知AABC顶点A(3,-1),AB边上的中线所在直线的方程为6x+10y-5

10、9=0,/B的平分线所在的方程为x-4y+10=0,求BC边所在的直线方程(答:2x9y650);(6)直线2xy4=0上有一点P,它与两定点A(4,1)、B(3,4)的距离之差最大,则P的坐标是(答:(5,6);(7)已知Ax轴,Bl:yx,C(2,1),VABC周长的最小值为(答:而)。提醒:在解几中遇到角平分线、光线反射等条件常利用对称求解。9.(1)直线过定点。如直线(3m+4x+(5-2m)y+7m-6=0,不论mB何值恒过定点(-1,2)(2)直线系方程(1)与已知直线Ax+By+C=0平行的直线的设法:Ax+By+m=0(mwC)(2)与已知直线Ax+By+C=0垂直的直线的设法

11、:Bx-Ay+m=0(3)经过直线::Ax+B1y+G=0,l2:Ax+B2y+C2=0交点的直线设法:A1x+B1y+C1+入(A2x+B2y+C2)=0(入为参数,不包括12)(3)关于对称(1)点关于点对称(中点坐标公式)(2)线关于点对称(转化为点关于点对称,或代入法,两条直线平行)(3)点关于线对称(点和对称点的连线被线垂直平分,中点在对称轴上、kk'=-1二个方程)(4)线关于线对称(求交点,转化为点关于线对称)10、圆的方程:圆的标准方程:xa2yb2r2。圆的一般方程:x2y2DxEyF0(D2+E2-4F0),特别提醒:只有当2222D+E4F0时,万程xyDxEyF

12、;%D2E24F的圆(二元二次方程Ax2Bxy条件是什么?(AC0,且B0且D2E2,一 一 D E0才表不圆心为(一,一),半径为 222Cy Dx Ey F 0表不圆的充要4AF 0);圆的参数方程:xarcos(为参数),其中圆心为(a,b),半径为ro圆的ybrsin参数方程的主要应用是三角换元:x2y2r2xrcos,yrsin;x2y2txrcos,yrsin(0r拈。Ax1,y1,Bx2,y2为直径端点的圆方程xx1xx2yy1yy20如(1)圆C与圆(x1)2y21关于直线yx对称,则圆C的方程为(答:x2(y1)21);(2)圆心在直线2xy3上,且与两坐标轴均相切的圆的标准

13、方程是(答:(x3)2(y3)29或(x1)2(y1)21);(3)已知P(1,J3)是圆yrsos(为参数,02)上的点,则圆的普通方程为,2P点对应的值为,过P点的圆的切线方程是(答:x2y2=4;;3xJ3y40);(4)如果直线l将圆:x2+y2-2x-4y=0平分,且不过第四象限,那么l的斜率的取值范围是(答:0,2);(5)方程x2+y2-x+y+k=0表示一个圆,则实数k的取值范围为(2);(6)M(x,y)|y3sos(为参数,0),N(x,y)|yxb,若MN,则b的取值范围是(答:一3,3匹)一一,、一.一22211、点与圆的位置关系:已知点Mx0,y0及圆C:x-aybr

14、2r0,(1)点M在圆C外CM|rx0a2y0b2r2;(2)点M在圆C内CMrx0a2y0b2r2;(3)点M在圆C上CMrx0a2y0b2r2。如点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值范围是12、直线与圆的位置关系:直线l : AxBy C 0和圆C:x a 2 y b 2 r2|a|r0有相交、相离、相切。可从代数和几何两个方面来判断:(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):0相交;0相离;0相切;(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d,则dr相交;dr相离;dr相切。提醒:判断直线与圆的位置关系一般用

15、几何方法较简捷。如(1)圆2x22y21与直线xsiny10(R,k,222.kz)的位置关系为(答:相离);(2)若直线axby30与圆xy4x10切于点P(1,2),则ab的值(答:2);(3)直线x2y0被曲线x2y26x2y150所截得的弦长等于(答:4斯);(4)一束光线从点A(1,1)出发经x轴反射到圆C:(x-2)2+(y-3)2=1上的最短路程是(答:4);(5)已知M(a,b)(ab0)是圆O:x2y2r2内一点,现有以M为中点的弦所在直线m和直线2l:axbyr,则A.m/l,且l与圆相交B.lm,且l与圆相交C.m/l,且l与圆相离D.lm,且l与圆相离(答:C);(6)

16、已知圆C:x2(y1)25,直线L:mxy1m0。求证:对mR,直线L与圆C总有两个不同的交点;设L与圆C交于A、B两点,若ABJ17,求L的倾斜角;求直线L中,截圆所得的弦最长及最短时的直线方程.(答:60°或120°最长:y1,最短:x1)13、圆与圆的位置关系(用两圆的圆心距与半径之间的关系判断):已知两圆的圆心分别为。1,。2,半径分别为1/2,则(1)当IO1O212时,两圆外离;(2)当|。1。212时,两圆外切;(3)当12<|。1。212时,两圆相交;(4)当|。1。212|时,两圆内切;(5)当0|。1。212|时,两圆内含。如双曲线b2A A2为直

17、径的两圆位置关系为(答:内切)1的左焦点为F1,顶点为A、隧,P是双曲线右支上任意一点,则分别以线段PR、14、圆的切线与弦长:切线:过圆x2y2R2上一点P(x0,y。)圆的切线方程是:x/yy。R2,过圆222.(xa)2(yb)2R2上一点P(x0,y°)圆的切线方程是2(xa)(x0a)(ya)(y0a)R,一般地,如何求圆的切线万程?(抓住圆心到直线的距离等于半径);从圆外一点引圆的切线一定有两条,可先设切线方程,再根据相切的条件,运用几何方法(抓住圆心到直线的距离等于半径)来求;过两切点的直线(即“切点弦”)方程的求法:先求出以已知圆的圆心和这点为直径端点的圆,该圆与已知

18、圆的公共弦就是过两切点的直线方程;切线长:过圆x2y2DxEyF0(xa)2(yb)2R2)外一点P(x0,y0)所引圆的切线的长为y2Dx0Ey0F(J(x0a)2(y°b)2R2);如设A为圆(x1)2y21上动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为(答:(x1)2y22);1(2)弦长问题:圆的弦长的计算:(垂径定理)常用弦心距d,半弦长a及圆的21O半径所构成的直角二角形来解:d(-a);过两圆C1:f(x,y)0、2C2:g(x,y)0交点的圆(公共弦)系为f(x,y)g(x,y)0,当1时,方程f(x,y)g(x,y)0为两圆公共弦所在直线方程.。15.解

19、决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)!16.圆的切线和圆系方程1 .过圆上一点的切线方程:圆x2y22,圆上一点为(x0,y0),则过此点的切线方程为Xox+yoy=r2(课本命题).圆x2y2r2,圆外一点为(Xo,y0),则过此点的两条切线与圆相切,切点弦方程为x°xy°yr2。2 .圆系方程:设圆C1:x2y2D1xE1yF10和圆C2:x2y2D2xE2yF20.若两圆相交,则过交点的圆系方程为2222xyDixEiyF1+入(xyD?xE2yF2)=0(入为参数,圆系

20、中不包括圆C2,入=-1为两圆的公共弦所在直线方程).设圆C:x2y2DxEyF0与直线l:Ax+By+C=Q若直线与圆相交,则过交点的圆系方程为x2y2DxEyF+入(Ax+By+C)=0(入为参数).,一一1,一例题1经过点R2,n)和Q235)的直线的斜率等于2,则m的值是(B)A.4B.3C.1或3D.1或4变:求经过点A(2,sin),B(cos,1)的直线l的斜率k的取值范围2 .已知直线l过P(1,2),且与以A(-2,3)、B(3,0)为端点的线段相交,求直线l的斜率的取值范围.1点评:要用运动的观点,研究斜率与倾斜角之间的关系!答案:一8,-2U5,+00)3 .已知坐标平面

21、内三点A(-1,1),B(1,1),C(2,g+1),若D为ABC的边AB上一©CD斜率k的变化范围.1答案:一00,-2U5,+OO)1 .求a为何值时,直线l1:(a+2)x+(1a)y1=0与直线l2:(a1)x+(2a+3)y+2=0互相垂直?答案:a=-12 .求过点P(1,1),且与直线l2:2x+3y+1=0垂直的直线方程.答案:3x-2y-5=0.例2.求过定点P(2,3)且在两坐标轴上的截距相等的直线方程.例3.已知ABC勺顶点A(1,1),线段BC的中点为口3,3).2(1)求BC边上的中线所在直线的方程;(2)若边BC所在直线在两坐标轴上的截距和是9,求BC所在

22、直线的方程.例4.方程(m22m-3)x+(2m2+m-1)y=2m-6满足下列条件,请根据条件分别确定实数m的值.(1)方程能够表示一条直线;(答案:m1)(2)方程表示一条斜率为1的直线.(答案:m2)例5.直线l的方程为(a2)y=(3a1)x1(aCR).(1)求证:直线l必过定点;(答案:(1,3)55(2)若直线l在两坐标轴上的截距相等,求l的方程;(答案:5x+5y4=0)(3)若直线l不过第二象限,求实数a的取值范围.(答案:分斜率存在与不存在)例1:求点A(-2,3)到直线l:3x+4y+3=0的距离d=例2:已知点(a,2)到直线l:x-y+1=0的距离为2,则a=。(a<0)例3:求直线y=2x+3关于直线l:y=x+1对称的直线方程。类型一:圆的方程例1求过两点A(1,4)、B(3,2)且圆心在直线y0上的圆的标准方程并判断点P(2,4)与圆的关系.变式1:求过两点A(1,4)、B(3,2)且被直线y0平分的圆的标准方程.变式2:求过两点A(1,4)、B(3,2)且圆上所有的点均关于直线y0对称的圆的标准方程.类型二:切线方程、切点弦方程、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论