实验--光纤光栅传感实验_第1页
实验--光纤光栅传感实验_第2页
实验--光纤光栅传感实验_第3页
免费预览已结束,剩余7页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、光纤光栅传感器实验、实验目的1. 了解和掌握光纤光栅的基本特性;2. 了解和掌握光纤光栅传感器的基本结构、基本原理;3. 光纤光栅传感测量的基本方法和原理。二、实验原理光纤光栅是近年来问世的一种特殊形式的光纤芯内波导型光栅,它具有极为丰富的频谱特性,在光纤传感、光纤通信等高新技术领域已经展示出极为重要的 应用。特别是在用于光纤传感时,由于其传感机构(光栅)在光纤内部,且它属 于波长编码类型,不同于普通光纤传感的强度型,因而具有其他技术无法与之相 比的一系列优异特性,如防爆、抗电干扰、抗辐射、抗腐蚀、耐高温、寿命长、 可防光强变化对测量结果的影响、体积小、重量轻、灵活方便,特别能在恶劣环 境下使

2、用。光纤光栅传感器可集信息的传感与信息的传输于一体,它极易促成光纤系统的全光纤化、微型化、集成化以及网络化等等,因此光纤光栅传感技术一 经提出,便很快受到青睐,并作为一门新兴传感技术迅猛崛起。1. 光纤光栅及其基本特性光纤光栅的基本结构如图11所示。它是利用光纤材料的光折变效应,用 紫外激光向光纤纤芯内由侧面写入,形成折射率周期变化的光栅结构,这种光栅光纤包层布喇格光纤光栅入射光反射光附图1 1光纤光栅示意图称之为布喇格(Bragg)光纤光栅。这种折射率周期变化的Bragg光纤光栅满足下面相位匹配条件时,入射光将 被反射:(1)B 2neff式中b为Bragg波长(即光栅的反射波长),为光栅周

3、期,neff为光纤材料 的有效折射率。如果光纤光栅的长度为L ,由耦合波方程可以计算出反射率 R为:Ar 0Ai(O)sinh 2 sL2 2 2 2s cosh sL (/ 2) sinh sL附图1- 2 曲线 L=2和L=5的反射谱附图1-3布喇格光纤光栅透射图1-2显示了两条不同反射率的布喇格光纤光栅反射谱,附图1-3为实际的 一个布喇格光纤光栅反射谱和透射谱。其峰值反射率Rm为:Rmtanh 2nL2neff反射的半值全宽度(FWHM ),即反射谱的线宽值(1)式中,neff,是温度T和轴向应变&的函数,因此布喇格波长的相对变化量可以写成:V / B (a )VT (1 Pe

4、)其中a、E分别是光纤的热膨胀系数和热光系数,;Pe是有效光弹系数,大 约为0.22。应变&可以是很多物理量(如,压力、形变、位移、电流、电压、振 动、速度、加速度、流量等等)的函数,应用光纤光栅可以制造出不同用途的传 感头,测量光栅波长的变化就可以计算出待测物理量的变化,所以(4)式是光栅传感的基本方程。SGQ-1型光纤光栅传感实验仪是我公司设计的系列实验设备之一。通过本实 验仪的相关实验使学生了解和掌握光纤光栅的基本特性、光纤光栅传感器的基本结构、光纤光栅传感的基本原理、光纤光栅传感测量的基本方法和原理,同时使 学生了解光纤光栅和光纤传感的局限性。2. 光纤光栅传感实验仪基本结构光

5、纤光栅传感实验仪,它包括光纤光栅传感测试单元和光纤光栅传感单元, 其基本结构如附图21、附图2-2。图2 1光纤光栅传感测试单元结构1 ASE宽带光源 2 1550nm信号光源输入接口3宽带光源输出接口4 宽带光源输入接口5-光纤耦合器6-波长悬臂梁调谐器7-螺旋测微器8- 光强信号数字电压表8-光强信号接收放大电子线路9- 波长传感器信号接收放大电子线路10 A/D转换及数据处理电子线路11 RS232数据输出接口20W2附图2-2光纤光栅传感单元基本结构12 传感信号输入接口13-光纤光栅温度传感器14、15-温度传感信号输出接口 1、219温度数字显示器 20光纤光栅应变传感器21应变传

6、感信号输出端22螺旋测微器光纤光栅传感测试单元,它主要包括宽带光源 1 掺铒(E叶)光纤ASE宽 带光源,手动光纤光栅波长悬臂梁调谐器 6、7,光强信号接收放大电子线路 8, A/D 转换及数据处理电子线路 10,光纤光栅波长传感器信号接收放大电子线路 9, 宽带光源输出3用光纤FC接头跳线连接到机箱面板上,传感测试用宽带光源输 入端 4 也连接到机箱面板上。此测试单元还有 RS232 数据计算机接口,有图形 显示和数据处理软件, 手动波长扫描, 手工或计算机自动两种数据记录、 描绘图 形、数据处理方法。由光纤 FC 接头跳线将光纤光栅传感测试单元接口 12 与光 纤光栅传感单元接口 15或

7、21 连接,可进行光纤光栅温度传感和光纤光栅应变传 感或波分复用传感实验; 宽带光源 1 有宽带输出接口 3,可独立以宽带光源使用。光纤光栅传感单元主要由光纤光栅温度传感器 13和光纤光栅应变传感器 20 组成,光纤光栅温度传感器还有附属的加热及加热调节1 6、1 7和温度检测装置、温度数字显示器 18、19,显示其实际温度;光纤光栅应变传感器 20中光纤光栅 粘接到悬臂梁上, 光纤光栅应变由悬臂梁弯曲形变产生, 连接到悬臂梁上的螺旋 测微器 22 的进动量给出悬臂梁形变的挠度,进而计算出光纤光栅应变。3. 光纤光栅传感的基本原理和光纤光栅传感测量的基本原理光纤光栅受温度T和应变&同时

8、影响时,光纤光栅峰值波长会发生变化, 其相对变化量可以写成:V / (a )VT (1 Pe)(4)其中a 分别是光纤的热膨胀系数和热光系数,其值a= 0.55X 10 6,=8.3X 10 6,即温度灵敏度大约是 0.0136 nm /C,(入为1550nm); Pe是有效光 弹系数,大约为 0.22,即应变灵敏度为 0.001209 nm / m。3.1 光纤光栅温度传感器 为了提高光纤光栅温度灵敏度,在光纤光栅温度传感器 13中,是将光纤光 栅封装在温度增敏材料基座上, 外部有不锈钢管保护, 外面有加热装置。 如附图 3 1 。波长变化量及温度灵敏度分别为(请自行推算) :/ T (a

9、) (1 Pe)(aj a) )(5)/Tt定义为该温度传感器的温度灵敏度,可由实验获得,大约是t0.035nm/C。由测量到的波长的变化量可计算出温度的变化t to :tt t0T附图3-1在上面的公式中,a石英材料(光纤光栅)光纤热膨胀系数0.5X10 6/CE:石英材料(光纤光栅)光纤热光系数 8.3X 10 6/CPe:石英材料(光纤光栅)光纤有效光弹系数,为0.22,n = 1 Pe,aj :基座热膨胀系数3.2光纤光栅应变传感器本实验仪的光纤光栅应变传感器是一种悬臂梁应变调谐机构。应用材料力学原理可以严格计算出光纤光栅的应变,用于模拟环境物理量使光纤光栅产生的应 变。由光纤光栅的应

10、变又可计算出传感光栅的波长变化。光纤光栅应变传感器20原理图如附图3 2光栅2D光纤光栅粘接在悬臂梁距固定端根部 x位置,螺旋测微器调节挠度, 力学可知,光纤光栅的应变为:3( I x ) dhT3其中l、h、d分别表示梁的长度、挠度和中性面至表面的距离由材料(6),n =1 PePe是光纤有效光弹系数。挠度变化厶h时,应变的变化量及峰值波长的 变化量为:(1 Pe)_(1 Pe)h h(8)为光纤光栅悬臂梁波长调谐灵敏度(单位是 nm/mm),可理论计算,但主要是通过实验获得。作为光纤光栅应变传感器使用时,应变调谐灵敏度为:h (1 Pe)波长调谐曲线附图3-3光纤光栅波长悬臂梁调谐曲线光纤

11、光栅波长悬臂梁调谐器20中悬臂梁是79X 5 x 1.4mm钢带,螺旋测微器 7最大行程为8mm,光纤光栅粘接在根部的5mm处,光纤光栅波长调谐灵敏度 为0.38nm/mm (实际测量为0.3875,对应的应变调谐灵敏度为 320卩& /mm), 最大调谐量3.8nm;附图3- 3是光纤光栅波长悬臂梁调谐曲线。3.3光纤光栅传感的测量方法光纤光栅传感测量系统如附图3- 4。光纤光栅传感属于波长编码类型,不同于普通光纤传感的强度型,光纤光栅传感测量系统核心部分是波长分析器。if1信号传输光纤耦合器X 、H4+H探测光源厂耦合器f-1 1111 1 "4 1 1 >4 1

12、1-*波长分析器光纤光栅传感头光电检测口一 显示附图3-4光纤光栅传感测量系统光纤光栅传感测量系统工作过程及原理是:具有宽带特性的探测光源经光纤 耦合器一个输出端、信号传输光纤到光纤光栅传感头, 再由传感光栅反射,形成 传感光栅的窄带反射光谱,再由传输光纤传输到波长分析器;波长分析器的功能 类似光谱仪的分光功能,探测传感光栅光谱分布及其光谱变化, 光电检测是将光 栅光谱分布及其光谱变化转变成电信号的变化和数据处理,显示为传感结果输 出,数据处理和显示可以由计算机完成。光纤光栅传感的测量有多种方法,附图 3- 5是可调F-P滤波器法的传感测 量系统在附图3-5中,波长分析器是一种电驱动的可调光纤

13、F-P滤波器本光纤光栅传感实验仪测量系统原理框图:如附图3-6附图3-6本光纤光栅传感实验仪测量系统原理框图在本测量系统中,波长分析器是一种悬臂梁可调光纤光栅滤波器,其原理图与图3-2光纤光栅应变传感器20相同,由螺旋测微器改变悬臂梁形变的挠度, 改变滤波器光纤光栅的光谱分布位移。 光电探测是一种宽带接收系统,光电探测 到的光强值是传感光纤光栅光强分布曲线与滤波器光纤光栅光强分布曲线的卷 积。其滤波器光纤光栅波长峰值与传感光纤光栅波长峰值相同时,光电信号达到极大值,极大值的波长位置即是传感光纤光栅波长位置。下图是在计算机光谱谱 图界面上显示出的光纤光栅谱图。XI)引* PP -o WAn 15

14、49.3s-b引f盯v i« q a*" t* > - j * *ErJQ WP « -0. 2BEJii-h.t希 Jiif!>*9 Dt « D 0a da a MD 0Bi 9B Dr sk无网卅®rr.£T昌峡;i燉杷占1C 4n朕4之nT光纤光栅峰值位置的确定方法:方法有多种,比如,最大值法,极值微分法, 适用于数据稳定情况;曲线形心法,即曲线切线交点定为峰值位置,切线是数据 拟合结果,误差较小,本实验拟采用此方法。光栅波长分辨率:是曲线斜率,V是信号电压最小可测量稳定值。从上面图示显示出,实际谱图曲线斜率为1.

15、176V/nm,信号电压最小可测量稳定值V有4mV,所以波长分辨率是4. 7pm,即温度测量分辩能力是 0.13C,应变测量分辩能力是3.9。三、注意事项1. 光纤跳线不要强拉硬拽,不要使弯曲半径过小。2. 光纤跳线接头安装时,要对准插入,轻轻旋紧,仅防磨损光学表面。3. 光纤跳线尽量保持在插入原位,不要频繁拔下插入。4. 仪器需要10多分钟的预热时间。实验前要充分准备,熟悉实验步骤,数据测 试要熟练紧凑,以免温度变化造成误差。5. 实验结束后,螺旋测微器尽量保持在旋出位置,使悬臂梁处于无应力状态。6. 测不到信号时,先检查跳线接头是否处于对准插入状态,检查接头表面是否 过脏,检查传感波长位置

16、是否处于可测量范围之内。四、实验步骤1. 光纤光栅温度传感实验 连接(测试单元图2- 1中宽带光源1的输出接口 3与宽带光源输入端4用跳 线连接,将RS232接口与计算机连接,将光纤光栅传感单元中的光纤光栅温度传感信号输出端14或15与附图2-1光纤光栅传感信号输入接口 12连接)。 温度调节钮旋至最小,开启电源,温度显示为室温温度,记录此时的温度to , 启动计算机传感测试软件。 在计算机传感测试软件的“模式选择”菜单下选“温度”。粗调确定出有光强 信号输出的起始位置,再以一定的小进给量,缓慢转动波长调谐螺旋测微器7到需要的刻度位置即挠度(单方向转动,以消除螺距差,下同),观察计算机传感测试

17、软件上传感光栅光谱分布曲线,直至光栅谱线全部显示出,这为一组室温 下光纤光栅光谱分布曲线数据。记录室温下传感光栅光谱分布曲线的极大值波长o,作为此次实验的参考波长。 转动传感单元上温度调节电位器,开始加热,5-6分钟后温度显示数字稳定, 记录此时温度数据T。重复步骤,开始这一温度下的光纤光栅光谱分布曲线数 据测试,记录传感测试软件上极大值波长的改变量 及温度的改变量t ; 重复步骤,记录多组数据。室温to =?参考波长0 = ?Tt 由t to t计算出测量温度,绘制测量温度值t与传感器处的实际温度值T 关系曲线。2. 光纤光栅应变传感实验 连接(光纤光栅传感单元中的光纤光栅应变传感信号输出端

18、与附图2- 1光纤光栅传感信号输入接口 12连接)。 应变调节钮旋至零刻度,开启电源(不开启传感单元电源),启动计算机传感测试软件。 在计算机传感测试软件的“模式选择”菜单下选“应变”。基本与温度传感实 验步骤相同,粗调确定出有光强信号输出的起始位置, 再以一定的小进给量,缓 慢转动波长调谐螺旋测微器7到需要的刻度位置即挠度,观察计算机传感测试软 件上传感光栅光谱分布曲线,直至光栅谱线全部显示出,这为一组“零刻度传感 应变”光纤光栅光谱分布曲线数据,记录“零刻度传感应变”极大值波长 转动传感调谐螺旋测微器一圈0.5mm,重复步骤开始这一应变值下的光纤光栅光谱分布曲线数据测试,记录传感测试软件上传感应变下极大值波长与“零刻度传感应变”极大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论