版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1第第6 6章章 共形映射共形映射By By 付小宁付小宁2 z 平面内的任一条有向曲线C可用 z=z(t), atb表示, 它的正向取为t增大时点z移动的方向, z(t)为一条连续函数. 如果z (t0)0,at0b, 则表示z (t)的向量(把起点放取在z0. 以下不一一说明)与C相切于点z0=z(t0).z(t0)z(a)z(b)z (t0)1 共形映射的概念3 事实上, 如果通过C上两点P0与P的割线P0P的正向对应于t增大的方向, 则这个方向与表示ttzttz)()(00的方向相同.Oxyz(t0)P0Pz(t0+Dt)C(z)当点P沿C无限趋向于点P0, 割线P0P的极限位置就是C
2、上P0处的切线. 因此, 表示ttzttztzt)()(lim)(0000的向量与C相切于点z0=z(t0), 且方向与C的正向一致.z (t0)4我们有1)Arg z (t0)就是z0处C的切线正向与x轴正向间的夹角;2)相交于一点的两条曲线C1与C2正向之间的夹角就是它们交点处切线正向间夹角Ox(z)z01C2C5设函数w=f(z)将点z,z+z分别影射为w,w+w,向量(z,z+z)与实轴的夹角为、向量(w,w+w)与实轴的夹角为,则称- 为影射w=f(z) 产生的角度转动,即点z处转动角 当w=f(z)解析时,点z处转动角=zzfzzfArgzzzzfzzfArgzzzArgzfzzf
3、ArgDDDDDD)()()()()()()()()(zfArg zzfzzfArgzzDDDD)()(lim)(lim006类似地,可定义函数w=f(z)在z处的伸缩率 当w=f(z)解析时,点z处伸缩率Note: 若 不存在,而伸缩率|)()(|lim|)( | )()(|lim00zzfzzfzzzzfzzfzzDDDDDD| )(|zf 1|lim|lim00DDDDDDzzzzzzzzzz)(,)(zfZzf71.解析函数的导数的几何意义 设函数w=f (z)在区域D内解析, z0为D内的一点, 且f (z0)0. 又设C为z平面内通过点z0的一条有向光滑曲线: z=z(t), at
4、b,且z0=z(t0), z (t0)0, at00映射成单位圆|w|0映射成单位圆|w|0映射成单位圆|w|0映射成|w|,2il 当()中取时即得解法一的结果:.ziwizi 6.3.3,0il当()中取时即得:.ziwzi55., 11 , 1,11, wizwz映射成映射成且使且使映射成映射成使使求分式线性映射求分式线性映射例例3 3,10的对称点的对称点是关于圆周是关于圆周与与因为因为 www,1111iziz 的对称点为的对称点为关于圆周关于圆周又又称点的性质知称点的性质知据分式线性映射不变对据分式线性映射不变对解解1 1 利用分式线性映射不变交比和对称点利用分式线性
5、映射不变交比和对称点56 iziw1 ,11, 1), 0 , 1( iiiizzww111111111即即,1izziz .)1(1)1(为所求为所求所以所以izziw ).1(110 wizizzw对应对应平面上的逆象为平面上的逆象为在在 由交比不变性知由交比不变性知57 解解2,1 wiz时时因因,)1(izbazw 所以所以, 1,1 wz时时又又由对称点的不变性知由对称点的不变性知,, 011 wiz对应对应,1, 1iab 故故.)1(1)1()1(1)1(为所求为所求所以所以izziizziw 利用不变对称点利用不变对称点, bai 故故58解解3 3将所求映射设为将所求映射设为
6、zzewia aa a 1,1zzAa aa a ,1 wiz时时因为因为, 0)1(1 ia a所以所以,11,11ii a aa a, 1,1 wz时时又又,11iA a aa a所以所以ziiziw 11111故故利用典型区域映射公式利用典型区域映射公式.)1(1)1(为所求为所求izzi 59且且满满足足条条件件映映射射成成求求将将22 0)Im( iwz .2)2(arg,2)2(的的分分式式线线性性映映射射 iwiiw分析分析 :22 0)Im( 可可考考虑虑映映射射成成为为将将 iwz)(zo.o)( 上半平面上半平面0)Im( z单位圆域单位圆域1 z单位圆域单位圆域22 iz
7、.i 2o)(w例例4 460平移平移伸长伸长解解 如图示如图示)(zo.i 2o)( iziz22 )(2 iwo)(w.izziw22)1(2 则所求映射为则所求映射为:.i 2.61另解另解 如图示如图示:izizei22 22iw 0)2( i izizeiwi2222 所以所以. 412)2(ieiwi 由此得由此得)(zo.o)( .o)(w.i 2.62. 0 从而得从而得,2)2( iw由于已知由于已知于是所求的映射为于是所求的映射为,2222iziziw . 22)1(2izziw 或或,2)2(arg iw63例5 求将单位圆|z|1映射成单位圆|w|1的分式线 性映射.x
8、1y(z)OOuv(w)1aa164解 设z平面上单位圆|z|1内部的一点a映射成w平 面上的单位圆|w|1的中心w=0. 这时与1| 1(0).,1,0,.zwwzwzwaaaa 点 对称于单位圆周的点应该被映射成平面上的无穷远点 即与对称的点 因此当时而当时满足这些条件的分式线性映射具有如下的形式,111zzkzzkzzkwaaaaaaaakk其中65由于z平面上单位圆周上的点要映成w平面上单位圆周上的点, 所以当|z|=1,|w|=1. 将圆周|z|=1上的点z=1代入上式, 得|,1 |1 |1|11| |aaaa又因wk所以 |k|=1, 即k=ei. 这里是任意实数.因此, 将单位
9、圆|z|1映射成单位圆|w|1的分式线性映射的一般表示式是e. (| 1)(6.3.5)1izwzaaa66. 1eee1ee|aaaaiiiiiw 反之, 形如上式的映射必将单位圆|z|1映射成单位圆|w|1. 这是因为圆周|z|=1上的点z=ei (为实数)映射成圆周|w|=1上的点:同时单位圆|z|1内有一点z=a映射成w=0.所以(6.3.5)必将单位圆|z|1映射成单位圆|w|0的分式线性映射.21211 1111422 22e,ee12311122iiizzzzwwzz解 由条件w(1/2)=0知, 所求的映射要将z=1/2 映射成|w|1的中心. 所以由(6.3.5) 得6811
10、1arg,0,arg0,22212120.1212wwwzzwzz故由于为正实数 从而即所以所求映射为694 几个初等函数所构成的映射1. 幂函数 w=zn(n2为自然数)在z平面内处处可导, 它的导数是1d,dnwnzzd0.dwz因而当z0时, 所以, 在z平面内除去原点外, 由w=zn所构成的映射处处保形.,nnw ziirzrewenrr 圆周圆周;射线射线。映射的特点是: 把以原点为顶点的角形域映射成以原点为顶点的角形域, 但张角变成了原来的n倍. 2 20 0 角形域角形域0 0n n 0 0 n 角角形形域域. 0 倍倍来来的的射射变变为为原原处处角角形形域域的的张张角角经经过过
11、映映即即在在nz )0 )0 n0)(w0)(z .0 ,2 ,处处没没有有保保角角性性在在映映射射时时当当因因此此 zzwnn一般,一般,710)(z特殊地特殊地: 20 n 角形域角形域 20 角形域角形域)n 2 00 映映射射成成正正实实轴轴的的上上岸岸 22 映映射射成成正正实实轴轴的的下下岸岸n上岸上岸)(w0沿正实轴剪开的沿正实轴剪开的w平面平面下岸下岸720002: 00()nnnnn根式函数z= w于是w=z 和z= w的映射特点是扩大与缩小角形域。例1 求把角形域0arg z/4映射成单位圆|w|1 的 一个映射.解 =z4将所给角形域0arg z0. 又从上节的例2知,
12、映射44| 1.iwwiziwzi将上半平面映射成单位圆因此所求映射为73(z)O4O( )1(w) z4iiwizizw4440arg01.4izzImwwi 7401210arg2zwz例 求映为单位园的一个映射.2222222201010arg0arg2Im01Im0Re01111.11zzzttststzizsiwwwsiziz 解:75例3 求把下图中由圆弧C2与C1所围成的交角为a的月牙域映射成角形域0arg w0+a的一个映射.a0(w)O1C1C2a(z)Oii76aO()a0(w)O1C1C2a(z)Oiiizizi0eiwizizewi)2(0177解 令C1,C2的交点z
13、=i与z=i分别映射成平面中的=0与=, 将所给月牙域映射成平面中的角形域的映射是具有以下形式的分式线性函数:izizk其中k为待定的复常数.111111,.izkikkiiziiCzi 令。这样就把映射成 平面上的正实轴00()2,0arg.iiziziwieezizia根据保角性 所给的月牙域映射成角形域由此得所求的映射为2. 指数函数zew )( zew因为因为, , r riewiyxz 设设 , , yex r r那末那末平平面面z平面平面wzew wzln , 0 ze.的共形映射的共形映射平面上平面上所构成的映射是一个全所构成的映射是一个全所以由所以由zew 常常数数直直线线 x
14、常数常数圆周圆周 r r 0)(z0)(w1)常数常数直线直线 y 常数常数射线射线 0)(z0)(w2)a a0)(z0)(z)(w00)(w特殊地特殊地:az )Im(0 )3 带形域带形域)20( aaw arg0 角形域角形域aii 2映射特点映射特点81由指数函数w = e z 所构成的映射的特点是: 把水平的带形域0Im(z)a(a)映射成角形域0arg wa. 例4 求把带形域0Im(z)映射成单位圆|w|1的 一个映射. w=e ziwieezziwi zi82( )A( )C222121zizwzizO( )11()2zz iwiO( )( )A( )CO( )w( )A(
15、)CO( ) z( )A( )C例例5 把上半单位圆把上半单位圆|z|1, 0Im(z)映射成单位圆映射成单位圆|w|1的映射的映射 83例6 求映射把如图所示的半带状域映成上半单位圆。i zi z 1-1i t1-1i wtewt zwe 84O(z)ab(w)Oi()Otbaw=e()iz ab aweO(s)b-asz a tis例7 求把带形域aRe(z)0 的一个 映射.O(t)(b-a)i85例8 求把具有割痕Re(z)=a, 0Im(z)h的上半 平面映射成上半平面的一个映射.xOy(z)C(a+ih)B DaOuv(w)aha a+hBCD86xOy(z)C(a+ih)B DaOuv(w)aha a+hBCDO(z1)CB Dihh2CO BD(z2)COBh2D(z3)O(z4)CBDh+hz1=zaz2=z12z3=z2+h234zz w=z4+aahazw22)(87解 不难看出, 解决本题的关键显然是要设法将垂直于x轴的割痕的两侧和x轴之间的夹角展平. 由于映射w=z2能将顶点在原点处的角度增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 版权合同范本协议要点梳理
- 直饮水购销合同
- 冰箱采购合同的运输责任
- 装修版权补充合同
- 现场拌合砂浆购销合同
- 个人借款合同范本格式格式格式阅读
- 短期借款合同与借据样本
- 装饰粉刷班组合同合作
- 产品推广翻译服务协议
- 网吧会员包月上网合同范例
- 小学语文大单元设计论文
- Unit 6 教学教学设计 2024-2025学年人教版七年级英语上册
- Visio商业图表制作分析智慧树知到期末考试答案章节答案2024年上海商学院
- 竞争性谈判工作人员签到表及竞争性谈判方案
- 山东省淄博市张店区2023-2024学年九年级上学期1月期末化学试题(含解析)
- 厦门旅游课件
- 人工智能导论智慧树知到期末考试答案章节答案2024年哈尔滨工程大学
- 单位食堂供餐方案(2篇)
- 农村《智慧养老》课件
- 《庖丁解牛》 (教学课件)- 统编版高中语文必修下册
- 2022课程方案试题
评论
0/150
提交评论