版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上数学归纳法数学归纳法是用于证明与正整数有关的数学命题的正确性的一种严格的推理方法在数学竞赛中占有很重要的地位(1)第一数学归纳法设是一个与正整数有关的命题,如果 (1数学归纳法的基本形式)时,成立;假设成立,由此推得时,也成立,那么,根据对一切正整数时,成立(2)第二数学归纳法设是一个与正整数有关的命题,如果当()时,成立;假设成立,由此推得时,也成立,那么,根据对一切正整数时,成立2数学归纳法的其他形式(1)跳跃数学归纳法当时,成立,假设时成立,由此推得时,也成立,那么,根据对一切正整数时,成立(2)反向数学归纳法设是一个与正整数有关的命题,如果 对无限多个正整数成
2、立;假设时,命题成立,则当时命题也成立,那么根据对一切正整数时,成立例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立(3)螺旋式归纳法 P(n),Q(n)为两个与自然数 有关的命题,假如 P(n0)成立; 假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n(>n0),P(n),Q(n)都成立;(4)双重归纳法设 是一个含有两上独立自然数 的命题 与 对任意自然数 成立;若由
3、和 成立,能推出 成立;根据(1)、(2)可断定, 对一切自然数 均成立3应用数学归纳法的技巧(1)起点前移:有些命题对一切大于等于1的正整数正整数都成立,但命题本身对也成立,而且验证起来比验证时容易,因此用验证成立代替验证,同理,其他起点也可以前移,只要前移的起点成立且容易验证就可以因而为了便于起步,有意前移起点(2)起点增多:有些命题在由向跨进时,需要经其他特殊情形作为基础,此时往往需要补充验证某些特殊情形,因此需要适当增多起点(3)加大跨度:有些命题为了减少归纳中的困难,适当可以改变跨度,但注意起点也应相应增多(4)选择合适的假设方式:归纳假设为一定要拘泥于“假设时命题成立”不可,需要根
4、据题意采取第一、第二、跳跃、反向数学归纳法中的某一形式,灵活选择使用(5)变换命题:有些命题在用数学归纳证明时,需要引进一个辅助命题帮助证明,或者需要改变命题即将命题一般化或加强命题才能满足归纳的需要,才能顺利进行证明5归纳、猜想和证明在数学中经常通过特例或根据一部分对象得出的结论可能是正确的,也可能是错误的,这种不严格的推理方法称为不完全归纳法不完全归纳法得出的结论,只能是一种猜想,其正确与否,必须进一步检验或证明,经常采用数学归纳法证明不完全归纳法是发现规律、解决问题极好的方法从0以外的数字开始如果我们想证明的命题并不是针对全部自然数,而只是针对所有大于等于某个数字b的自然数,那么证明的步
5、骤需要做如下修改: 第一步,证明当n=b时命题成立。 第二步,证明如果n=m(mb)成立,那么可以推导出n=m+1也成立。 用这个方法可以证明诸如“当n3时,n2>2n”这一类命题。 只针对偶数或只针对奇数如果我们想证明的命题并不是针对全部自然数,而只是针对所有奇数或偶数,那么证明的步骤需要做如下修改: 奇数方面: 第一步,证明当n=1时命题成立。 第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 偶数方面: 第一步,证明当n=0或2时命题成立。 第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 递降归纳法数学归纳法并不是只能应用于形如“对任意的n”这样的命题。对
6、于形如“对任意的n=0,1,2,.,m”这样的命题,如果对一般的n比较复杂,而n=m比较容易验证,并且我们可以实现从k到k-1的递推,k=1,.,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,.,m,原命题均成立。(一)第一数学归纳法:一般地,证明一个与自然数n有关的命题P(n),有如下步骤:(1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;(2)假设当n=k(kn0,k为自然数)时命题成立,证明当n=k+1时命题也成立。综合(1)(2),对一切自然数n(n0),命题P(n)都成立。(二)第二数学归纳法:对于某个与自然数有关的命题P(n),(1)验证n=n0时P(n)成立;(2)假设n0n<=k时P(n)成立,并在此基础上,推出P(k+1)成立。综合(1)(2),对一切自然数n(n0),命题P(n)都成立。(三)倒推归纳法(反向归纳法):(1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以是一个无穷数列中的数,如对于算术几何不等式的证明,可以是2k,k1);(2)假设P(k+1)(kn0)成立,并在此基础上,推出P(k)成立,综合(1)(2),对一切自然数n(n0),命题P(n)都成立;(四)螺旋式归纳法对两个与自然数有关的命题P(n),Q(n),(1)验证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 礼服商业机会挖掘与战略布局策略研究报告
- 化妆用漂白剂脱色剂产品供应链分析
- 腰包商业机会挖掘与战略布局策略研究报告
- 医用软化水产品供应链分析
- 塑料旅行袋产业链招商引资的调研报告
- 个人资产保险索赔评估行业市场调研分析报告
- 书籍装订用布产业链招商引资的调研报告
- 编码和解码装置和仪器产品供应链分析
- 产品质量检测服务行业营销策略方案
- 电动织毯机市场发展前景分析及供需格局研究预测报告
- 职业暴露针刺伤应急预案演练脚本-
- 大学物理-麦克斯韦速率分布定律
- 优先合理使用基本药物督查分析反馈表
- 金蝶案例分析
- 陈丽芝《新疆之春》教案5
- 群文阅读(三年级下册第一单元)
- 《地震》教学设计
- 软件开发保密措施
- 大一新生的学业规划书(6篇)
- 0-高压蒸汽管线焊缝返修施工方案
- LY/T 1451-2017纤维板生产综合能耗
评论
0/150
提交评论