31平行四边形(二)_第1页
31平行四边形(二)_第2页
31平行四边形(二)_第3页
31平行四边形(二)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、理科教研组集体备课教案第三章 证明(三)课题1平行四边形(二)教学目标1、使学生经历探索、猜测、证明的过程,体会证明的必要性。2、注意渗透数学思想方法,如特殊结论到一般结论的归纳思想、类比、转化的思想方法等。3、尽可能地为学生提供自主探索发现的空间,然后再进行证明,从而将证明作为探索活动的自然延续和必要发展,使学生经历“探索发现猜想证明”的过程,体会合情推理与论证推理在获得结论中各自发挥的作用。4、注意引导学生探索证明不同思路和方法,并进行适当的比较和讨论,开阔学生的视野,培养学生的思维能力,注意提高学生的逻辑证明的能力。教学重点探索有关平行四边形判定。教学难点探索有关平行四边形判定。教学用具

2、小黑板等。教学方法讲授法、综合法、练习法等。教学过程教学内容活动设计备注环节:回顾、导入新内容师:前面我们已经学习过平行四边形的判定,现在我们来回顾一下判定的具体内容。生:平行四边形的判定有4条两组对边分别平行的四边形是平行四边形。两组对边分别相等的四边形是平行四边形。一组对边平行且相等的四边形是平行四边形。两条对角线互相平分的四边形是平行四边形。师:很好。那有没有同学能够从命题的角度指出到这四条判定的相同和不同之处?生:这4个命题是平行四边形性质的逆命题。生:他们都是真命题。生:我们特别关注第一条,它是平行四边形的定义,既是平行四边形的判定,又包含着平行四边形的性质,这是它与其它3条不同的地

3、方。师:大家刚才的发言都非常好,但是大家注意到没有它们都不是我们现在知识体系中的公理?它们的正确性是需要我们证明的。生:原来数学这么严密、只会用是不行的,还必须知道为什么。师:很好的体会,今天我们就来解决这个问题。师:下面请同学们充分发挥你自己的聪明才智和团队的力量,去寻找解决问题的策略,或者找到解决问题路上的“坎儿”。环节:探究、质疑找方法1、一组对边平行且相等的四边形是平行四边形“一组对边平行且相等”是它的条件,而“四边形是平行四边形”就是我们要解决的问题。我们小组的坎儿是:虽然能够找到“条件和要解决的问题”但是它不象我们以前解决过的问题有图形。师:没有图形对我们解决问题有影响吗?生:当然

4、有。那一组平行且相等的边没有标记,会导致我们没有办法写过程 ,就算我们根据题意自己构造了下面这个四边形,哪一组对边是命题里说的那一组?你知道吗?难道能随便选择一组对边就可以?师:看来上一组同学的问题(找不到已知条件)已经解决了。对于这一小组同学的问题那些同学可以发表一下自己的见解?生:我们也不确定师:那好,每一组同学分成两部分,一部分选择,为“平行且相等的对边”另一组同学选择,为“平行且相等的对边”看看我们能不能完成对一组对边平行且相等的四边形是平行四边形这个命题的证明。生:我们选择,为“平行且相等的对边”这样命题一组对边平行且相等的四边形是平行四边形就变成了“四边形中,/且,求证四边形是平行

5、四边形”证明:连接/CD ABD=CDB 又,/四边形是平行四边形。生:老师他们的这个题目连接也可以用同样的方法证明。师:很好,我们不仅解决了这个问题,同学们的思路也很开阔,能从不同的角度对这个问题加以验证。那选择,为“平行且相等的对边”的同学得到结论了吗?生:我们选择,为“平行且相等的对边”这样命题一组对边平行且相等的四边形是平行四边形就变成了“四边形中,/且,求证四边形是平行四边形”证明:连接/ BDDB 又,/四边形是平行四边形。我们也可以连接再证明。2两组对边分别相等的四边形是平行四边形生:由前面的证明我们可以很简单的得到证明的过程:首先画出符合题意的图像,写出已知求证。已知:四边形中

6、,求证:四边形是平行四边形证明:连接, 又/,/四边形是平行四边形。同理我们也可以连接来证明。师:这位同学对于基本的证明命题的思路已经掌握得比较好。那还有没有不同的思路?生:老师既然刚才我们已经证明了一组对边平行且相等的四边形是平行四边形所以只要将刚才的思路稍加改动就可以得到另外一种思路证明:连接, 又/四边形是平行四边形。 充分调动学生的积极性,使他们能够在自己已经构建的知识结构基础上,提出符合其个人认知层次的问题,从而为“教-学”找到良好的切入点。内容:学生自由组合,探索有关平行四边形判定的问题,自由交流、质疑、寻求帮助。目的:尽可能以学生“生成的问题”和寻求解决问题策略的过程作为课堂重要的支撑点。充分调动每个学生的原认知、和已有的知识构建去解决新问题。实际效果:自由组合,主动探索,激发了学生学习的主动性,取得较好的教学效果,课堂气氛活跃。使学生养成良好的从思考中掌握方法、提出猜想、大胆突破的好的数学品质环节:应用、深化认识已知:如图求证:四边形MNOP是平行四形1.证明: (x-3)2(x5)2=42。x=8MN=5=POPM=3=ON四边形MNOP是平行四边形.2、证明:(x-3)2(x5)2=42x=8PM=11-8=3PM2+MO2=PO2ÐPMO=90°PM/ON且ON=8-5=3四边形MNOP是平行四边形.巩固本节课的基本知识

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论