版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、概率在决策中的应用典例某地政府准备对当地的农村产业结构进行调整,为此政府进行了一次民意调查.100个人接受了调查,要求他们在赞成调整、反对调整、对这次调整不发表看法中任选一项调查结果如下表所示:男女总计赞成18927反对122537不发表看法201636总计5050100随机选取一个被调查者,他对这次调整表示反对或不发表看法的概率是多少?解用A表示事件“对这次调整表示反对”,B表示“对这次调整不发表看法”,由互斥事件的概率加法公式,得P(AB)P(A)P(B)0.73,因此随机选取一个被调查者,他对这次调整表示反对或不发表看法的概率是0.73.概率在决策问题中的应用(1)由于概率反映了随机事件
2、发生的可能性的大小,概率是频率的近似值与稳定值,所以可以用样本出现的频率近似地估计总体中该结果出现的概率(2)实际生活与生产中常常用随机事件发生的概率来估计某个生物种群中个别生物种类的数量、某批次的产品中不合格产品的数量等活学活用某食品公司因新产品上市拟举办促销活动以促进销量,方法是买一份糖果摸一次彩公司准备了一些黄、白两色乒乓球,这些乒乓球的大小与质地完全相同,另有一个棱长约为30厘米密封良好且不透光的长方体木箱(木箱上方可容一只手伸入)该公司拟按1%的中奖率设置大奖,其余99%则为小奖,大奖的奖品价值400元,小奖的奖品价值2元请你按公司的要求设计一个摸彩方案解:可以提出如下2个方案(答案
3、不唯一)(方案1)在箱内放置100个乒乓球,其中1个为黄球,99个为白球顾客一次摸出一个乒乓球,摸到黄球为中大奖,否则中小奖(方案2)在箱内放置25个乒乓球,其中3个为黄球,22个为白球,顾客一次摸出2个乒乓球,摸到2个黄球中大奖,否则中小奖.概率在整体估计中的应用典例为了调查某野生动物保护区内某种野生动物的数量,调查人员某天逮到这种动物1 200只作好标记后放回,经过一星期后,又逮到这种动物1 000只,其中作过标记的有100只,按概率的方法估算,保护区内有多少只该种动物解设保护区内这种野生动物有x只,假定每只动物被逮到的可能性是相同的,那么从这种野生动物中任逮一只,设事件A带有记号的动物,
4、则由古典概型可知,P(A).第二次被逮到的1 000只中,有100只带有记号,即事件A发生的频数m100,由概率的统计定义可知P(A),故,解得x12 000.所以,保护区内约有12 000只该种动物利用频率与概率的关系求未知量的步骤(1)抽出m个样本进行标记,设总体为未知量n,则标记概率为.(2)随机抽取n1个个体,出现其中m1个被标记,则标记频率为.(3)用频率近似等于概率,建立等式.(4)求得n.活学活用若10个鸡蛋能孵化出8只小鸡,根据此情况,估计某小鸡孵化厂20 000个鸡蛋能孵化出多少只小鸡解:假定每个鸡蛋能孵化出小鸡的可能性是相等的,从中任选一个,记事件A鸡蛋能孵化出小鸡,此试验
5、为古典概型,则P(A)设20 000个鸡蛋能孵化出小鸡m只,则P(A),由得,解得m16 000.所以20 000个鸡蛋大约能孵化出小鸡16 000只层级一学业水平达标1若经检验,某厂的产品合格率为98%,估算该厂8 000件产品中的次品件数为()A7 840B160C16 D784解析:选B在8 000件产品中,合格品约有8 000×98%7 840件,故次品约有8 0007 840160(件)2如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率是,则阴影区域的面积为()A. B.C. D无法计算解析:选B在正方形中随机撒一粒豆
6、子,它落在阴影区域内的概率P,又因为S正方形4,所以S阴影,故选B.3设有外形完全相同的两个箱子,甲箱中有99个白球1个黑球,乙箱中有1个白球99个黑球随机地抽取一箱,再从取出的一箱中抽取一球,结果取得白球,我们可以认为这球是从_箱中取出的解析:甲箱中有99个白球1个黑球,故随机地取出一球,得到白球的可能性是,乙箱中有1个白球99个黑球,从中任取一球,得到白球的可能性是.由此可知,这一白球从甲箱中取出的概率比从乙箱中取出的概率大得多,既然在一次抽样中抽到白球,当然可以认为是由概率大的箱子中取出的,所以我们可以认为该球是从甲箱中取出的答案:甲4为了检测山上某个森林内松鼠的数量,可以使用以下方法:
7、先从山上捕捉松鼠100只,在每只松鼠的尾巴上作上记号,然后再把它放回森林经过半年后,再从森林中捕捉50只,尾巴上有记号的松鼠共5只,试根据上述数据,估计此森林内松鼠的数量解:假定每只松鼠被捕捉的可能性是相等的,从山上任捕一只,设事件A为“带有记号的松鼠”,则由古典概型可知P(A).第二次从山上捕捉50只,有记号的松鼠共有5只,即事件A发生的频数m5,由此知P(A),由可得,所以n1 000.所以,森林内约有松鼠1 000只层级二应试能力达标1“今天北京的降雨概率是60%,上海的降雨概率是70%”,下列说法不正确的是()A可能北京今天降雨了,而上海没有降雨B可能上海今天降雨了,而北京没有降雨C可
8、能北京和上海都没有降雨D北京降雨的可能性比上海大解析:选D因为北京的降雨概率比上海的降雨概率小,故D说法不正确2调查运动员服用兴奋剂的时候,应用Warner随机化应答方法调查300名运动员,得到80个“是”的回答,由此,我们估计服用过兴奋剂的人占这群人的()A3.33% B53%C5% D26%解析:选A应用Warner随机化应答方法调查300名运动员,我们期望有150人回答了第一个问题,而在这150人中又有大约一半的人即75人回答了“是”其余5个回答“是”的人服用过兴奋剂,由此估计这群人中服用过兴奋剂的大约占3.33%.3乘客在某电车站等候26路或16路电车,在该站停靠的有16,22,26,
9、31四路电车,若各路电车先停靠的概率相等,则乘客等候的电车首先停靠的概率等于()A. B.C. D.解析:选A因为各路电车先停靠的概率都等于,所以乘客等候的电车首先停靠的概率为.4某人手表停了,他打开电视机想利用电视机上整点显示时间来校正他的手表,则他等待不超过一刻钟的概率为()A.B.C. D.解析:选C由于电视机每隔1小时显示整点一次,并且在060之间任何一个时刻显示整点是等可能的,所以在哪个时间显示整点的概率只与该时间段的长度有关而与该时间段的位置无关,这符合几何概型的条件,这是一个与时间长度有关的几何概型,P.5某人捡到不规则形状的五面体石块,他在每个面上都作了记号,投掷了100次,并
10、且记录了每个面落在桌面上的次数(如下表)如果再投掷一次,估计该石块的第4面落在桌面上的概率约是_.石块的面12345频数3218151322解析:第四面落在桌面上的概率为P0.13.答案:0.136地球上的山地、水和平原面积比约为361,那么太空的一块陨石恰好落在平原上的概率为_解析:因为平原所占比例为,所以陨石恰好落在平原上的概率为.答案:7在等腰直角三角形ABC中,斜边BC2,在该三角形内任取一点,则该点到直角顶点A的距离不大于1的概率为_解析:由已知可得SABC×2×22,该三角形内到点A距离不大于1的点构成扇形面积S1,所以P.答案:8.有一个转盘游戏,转盘被平均分
11、成10等份(如图所示)转动转盘,当转盘停止后,指针指向的数字即为转出的数字游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜猜数方案从以下三种方案中选一种:A猜“是奇数”或“是偶数”B猜“是4的整数倍数”或“不是4的整数倍数”C猜“是大于4的数”或“不是大于4的数”请回答下列问题:(1)如果你是乙,为了尽可能获胜,你会选哪种猜数方案,并且怎样猜?为什么?(2)为了保证游戏的公平性,你认为应选哪种猜数方案?为什么?(3)请你设计一种其他的猜数方案,并保证游戏的公平性解:(1)可以选择B,猜“不是4的整数倍数”或C,猜“是大于4的数”“不是4的整数倍数”的概率为0.8,“是大于4的数”的概率为0.6,它们都超过了0.5,故乙获胜的机会大(2)为了保证游戏的公平性,应当选择方案A.因为方案A猜“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的(3)设计为猜“是大于5的数”或“小于6的数”,也可以保证游戏的公平性9小红家的晚报在下午5:306:30之间的任何一个时间随机地被送到,小红一家人在下午6:007:00之间的任何一个时间随机地开始进晚餐(1)你认为晚报在晚餐开始之前被送到和在晚餐开始之后被送到哪种可能性更大些?(2)晚报在晚餐开始之前被送到的概率是多少?解:(1)晚报在晚餐开始之前
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版音乐器材行业人才培训与招聘合同3篇
- 2024年电池产品区域独家代理协议版B版
- 2024征收土地环境影响评估合同范本3篇
- 2024年运输公司司机劳务合同样本3篇
- 2024年租赁物维修责任合同条款明细
- 2025版陶瓷机械设备租赁服务合同范本3篇
- 2024房屋买卖合同书
- 2024年钢制暖气片购销合同
- 2025年度城市照明设施租赁合同3篇
- 2025年度智能LED显示屏采购合同2篇
- 智能检测与监测技术-智能建造技术专02课件讲解
- 2025蛇年一年级寒假作业创意与寓意齐【高清可打印】
- 辽宁省重点高中沈阳市郊联体2023-2024学年高二上学期期末考试语文试题(解析版)
- 多系统萎缩鉴别及治疗
- 小学体育足球课教育课件
- HSE(健康、安全与环境)计划书
- 质量保证大纲(共14页)
- Starter软件简易使用手册
- 苏少版音乐六年级上册《初升的太阳》教案
- 轻质隔墙板安装合同协议书范本标准版
- 车辆管理各岗位绩效考核量表
评论
0/150
提交评论