版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2003年7月工业水处理Jul.,2003超声与其他技术联合在废水处理中的应用郭照冰,郑正,袁守军,唐登勇(南京大学环境工程系污染控制与资源化国家重点实验室,江苏南京 210093)摘要超声是一种处理有机污染物废水的新型技术,近10a来,超声降解水体中有机污染物的研究十分活跃,但由于此技术存在着费用高、降解效率低等一些局限性,而更有效的方法是将超声技术与其他水处理技术联合使用。所以作者系统地介绍了超声/臭氧法、超声/紫外/臭氧法、超声/过氧化氢法、超声/Fenton试剂法、超声/光化学法、超声/电化学法、超声/磁化学法、超声/湿法氧化法、超声/生物法、超声/脱附法等联用技术在水处理中的应用研究
2、现状,并展望了今后的重点研究方向。 关键词超声;联用技术;有机污染物中图分类号X703.1 文献标识码A 文章编号1005-829X(2003)07-0008-05ApplicationofthecombinationsofultrasonicandothertechniquestowastewatertreatmentGuoZhaobing,ZhengZheng,YuanShoujun,TangDengyong(StateKeyLaboratoryofPollutionControlandResourceReuse,DepartmentofEnvironmentEngineering,Nan
3、jingUniversity,Nanjing210093,China)Abstract:Ultrasonicisanewtechniquetodestroyorganicpollutantsinwater,inthelasttenyears,thestudyonthedegradationoforganicpollutantsinwaterbyultrasonicisveryactive.However,owingtosomelimitsofthistechnique,suchashighpowerandlowefficiencyindegradation,moreeffectivewaysa
4、reincombinationswithotherwastewatertreat-menttechniques.Thepapersystemicallyintroducessomeunitedtechniques,suchasUS/O3,US/UV/O3,US/H2O2,US/Fenton,sonoelectrochemistry,sonophotochemistry,sonomagnetchemistry,SONIWOandsoon.Finally,thefutureresearchemphasisareviewed.Keywords:ultrasonic;unitedtechnique;o
5、rganicpollutant超声波是指频率高于20kHz的声波。当一定强度的超声波通过媒体时,会产生一系列的物理、化学效应。早在1929年就有超声波化学效应的报道,而将其应用于水处理领域只是近10a的事情,它主要用来加速降解水中难降解的有毒有机污染物,是一种高级催化氧化水处理技术。基金项目江苏省 十五 高技术项目(BG2001040)在空化泡内产生异常的高温(高于5000K)和高压(高于50MPa)。因此,可以对水中污染物直接进行热解作用,另外,在这高温高压环境下产生氧化电位很高的羟基自由基,它可以对许多有机物进行氧化反应,达到降解污染物和去除COD的作用。 通过超声降解水体中一系列有毒有机
6、物的研究表明,超声降解在技术上可行,但要使其走向工业化,仍存在能耗大、费用高、降解不彻底等问题。为此,最近的研究热点纷纷转向超声与其他水处理技术联用的方向上来,以产生高浓度的羟基自由基来加速有机污染物的分解反应。1 超声/臭氧联用技术在超声与其他水处理技术相组合的联用技术中,超声/臭氧(US/O3)联用技术是研究最多及最早的技术之一。臭氧作为一种强氧化剂用于水处理工US/O3技术降解水中有毒有机物具有高效、低成本的特点,在水处理中具有很大的应用潜力。2 超声/紫外/臭氧联用技术2000年,E.Naffrechoux等为了提高芳香族化合物的声降解速率,探讨了超声与紫外光组合工艺对芳香族化合物的降
7、解影响 11 。结果发现,苯酚的降解率有很大的提高,这可能是由于发生了三种不同的氧化过程:光化学氧化、高频声化学氧化和O3的氧化过程,有效地降低了生活污水中的COD。73 超声/H2O2联用技术在超声氧化过程中,超声起到反应物与催化剂的双重作用。作为反应物,超声可使有机分子降解;作为催化剂,超声使H2O2分解生成有效的氧化自由基,如HO 和HOO ,从而导致有机物发生一系列的氧化降解反应。H2O2在反应中,既是HO 的来源,又是HO 的清除剂,因此H2O2的量必须保持最佳值。1996年,G.Lin等在超声反应器中加入H2O2后发现其可提高2-氯酚的降解速度 12 。2000年,陈伟等研究了超声
8、及超声/H2O2联合技术降解4-氯酚的效果,详细探讨了其影响因素,包括声强、溶液pH、4-氯酚的初始浓度和自由基清除剂 13 。4-氯酚的超声降解机理以自由基氧化为主,超声/H2O2联合技术对水中4-氯酚的降解率和TOC的去除率均比单独采用超声处理的效果好。2001年,F.Chemat等使用高强度(10W/cm2)的超声与H2O2联合技术,通过TOC和UV-VIS的分析技术,对天然腐殖质与合成的腐殖质进行超声氧化降解。反应60min后,TOC去除率50%,腐殖质全部降解。4 超声/Fenton联用技术在超声/H2O2体系中加入催化剂,其超声降解效果更佳,且COD去除率更高。2002年,Carm
9、enStavarache等研究了氯苯在Fen- 17ton体系中的超声降解,通过PdSO4这一有效的指示剂,鉴别了声解的中间产物,阐述了氯苯声解的可能机理,解释了苯、苯酚、多酚和氯酚的形成。5 超声/光化学联用技术2001年,WuChunde等采用超声/光化学联用技术降解苯酚溶液,结果表明,以TOC去除率为评价指标,超声/光化学联用技术降解苯酚溶液存在着明显的协同效应。Fe2+作为催化剂提高苯酚的TOC的去除率。苯酚降解时产生中间产物,因此其矿化不彻底。苯酚的降解速率随着溶液pH的降低182+14专论与综述 工业水处理2003-07,23(7)和溶解O2量的增加而增加。主要的降解产物(对苯二酚
10、、儿茶酚、苯醌和间苯二酚)说明HO 参与了苯酚的降解。光催化处理有机污染物是一种有效的方法,在以TiO2作催化剂的光催化处理过程中,采用超声波的分散效应,使TiO2均匀分散,提高其催化活性。 1998年,IrfanZ.Shirgaonkar等采用频率为22kHz的超声波,15W的紫外灯作光源,TiO2作催化剂,对2,4,6-三氯酚进行声光化学降解。结果表明,2,4,6-三氯酚的声光化学降解与声强、反应温度和超声装置有关,而与紫外光的传输方式、污染物的浓度无关。声强、温度越高,2,4,6-三氯酚的降解率就越大 19 。2001年,LevDavydov等选用4种不同的TiO2作催化剂,考察超声/光
11、化学法对水杨酸降解的影响,得出降解水杨酸的最大协同体系 20 。与紫外光降解相比,声光化学法降解水杨酸显示出更快的降解速率和更高的降解效率,声光化学法降解水杨酸时与粒径较小的催化剂(Hombikat)存在协同效应,而与粒径最大的催化剂(Aldrich)无协同作用。在超声条件下,DegussaP25催化剂对水杨酸有最大的降解活性。同时,他们分析了苯酚在光催化降解时本体溶液中的中间产物,超声波的存在消除了溶液中的有毒中间产物。6 超声/电化学联用技术大多数有机污染物在阳极氧化时可降解为CO2和H2O。然而,在电解法处理有机废水,有机物在电极上被氧化或还原时,会在电极表面生成一层聚合物膜,从而改变了
12、电极表面性质,导致电极活性下降和电耗增加等。利用超声波的空化效应,可使电极复活,强化反应物从液相主体向电极表面的传质过程,消除浓差极化等。1996年,F.Trabelsi等借助电化学方法考察了超声反应器中的传质过程,这种方法可用于确定反应器中的活性区域。实验采用频率为20kHz的超声波,在NaCl溶液中对苯酚进行声电化学氧化10min后,苯酚的降解率为75%,但生成对苯醌有毒中间产物。在同样时间里,采用频率为500kHz的超声波进行声电化学降解,苯酚的降解率为95%,最终降解产物为乙酸和氯乙酸。2001年,陈卫国等采用自制的声电联用装置(UECOS),选择苯酚、十二烷基苯磺酸钠(DBS)和邻苯
13、二甲酸氢钾三种有机物为对象,研究了UECOS技术去除有机污染物的机理主要是基于在电催化过程 21中生成H2O2并迅速生产HO 对水中有机物的强氧化作用 22 。用UECOS技术处理有机污染物比单独的ECS法去除率提高10%20%。根据IR、GC-MS和TOC的分析结果表明,有机反应物首先被氧化成小分子有机碎片,最终可被矿化为CO2和H2O。研究中用自旋捕集ESR法测出了在UECOS处理废水过程中不断产生的活性物质HO 。7 超声/微电场联用技术超声/微电场联用技术是超声/电化学联用技术的一种形式。1998年,H Huang等研究了超声/微电场联用技术降解水中的CCl4,该过程具有耦合作用,可能
14、由于空化效应能够清洗和活化Fe0表面,并加速了反应物向Fe0表面的传质速度 24 。 2002年,卞华松等研究了超声微电场中硝基苯的降解过程,并探讨了降解机理及反应历程。结果表明,硝基苯的降解符合一级反应,超声与微电场的耦合作用大大提高了硝基苯的降解效率,在槽电压10V条件下,协同作用的降解速率比简单加和作用的速率高一倍以上,经过30min协同处理后可以获得93.8%的去除率,而溶液中饱和气体种类等对降解也产生一定的影响 25 。经紫外和SMPE-GC-MS分析,推断硝基苯在电超声场作用下存在氧化还原反应与热解、自由基作用等协同作用。主要中间产物为苯胺、偶氮苯、1-氧-2-苯基二氮烯、1,2-
15、2工业水处理2003-07,23(7) 郭照冰,等:超声与其他技术联合在废水处理中的应用苯二甲酸二丁酯、1,2-苯二甲酸丁酯异丁酯等,最终产物为CO2,H2O及无机盐类。8 超声/湿法氧化联用技术由于超声降解不完全,而湿法氧化技术又难以处理某些大分子有机物,故通过该法先在常温下用超声将大分子有机物降解成小分子,再用湿法氧化处理,该法具有互补作用。2000年,AtulD.Dhale等研究了超声/湿法氧化联用技术(SONIWO)对十二烷基苯磺酸钠的降解影响,结果表明,在483K以上,超声提高了湿法氧化的速率和COD的去除率。CuSO4溶液也能提高COD的去除率。湿法氧化十二烷基苯磺酸钠时,生成了苯
16、酚、对苯二酚、马来酸、草酸、丙酸和乙酸。同时他们还提出了湿法氧化的总速率与COD去除率之间的关系式。9 超声/生物联用技术对一些难生化降解的废水,可先经超声处理以提高其生化降解性,再用常规生化法处理。既解决了单独使用超声成本高的问题,也解决了生化法难于处理的问题,具有互补性,有良好的工业前景。 李志建等在2000年用超声与厌氧生化法联合处理碱法草浆黑液,其生化性提高,综合毒性降低,污泥活性增强,活性期前移。2002年,O.Schlafer等采用超声/生物联用技术处理食品废水。通过大量实验考察了声强对废水中有机物的降解率的影响。实验结果表明,声强只是在很小的范围内才能显著提高生物活性。过低的声强
17、对降解速率无影响,过高的声强会显著降低生物活性,因此在研究生物作用时应优化声强。实验发现,在频率为25kHz,声强为1.5W/m的超声波作用下,最大生物降解率增加超过100%。从而使反应器体积大幅度减小,同时,活化了生物过程,降低了输入能量。超声/生物反应器主要应用于生物技术和制药工业,制得高价值的产品来弥补超声的高投资。10 超声/脱附联用技术参考文献1MasonTJ.Sonochemistry:ATechnologyforTomorrowJ.Chem.andIndu.,1993,(2):47-5022726减少的方向移动,而且通过超声空化作用强化了相间质量的传递过程,在超声条件下的扩散系数
18、比常规条件下的扩散系数约大一个数量级,随着超声场声强的增加,扩散系数也增大29。11 超声/磁化学联用技术利用磁的化学效应,有效地防止或减少HO 和H 的复合,提高HO 的浓度,大大强化了超声处理效果。南京大学靳强等在2002年就此废水处理方法申请了发明专利 30 。12 超声/电/磁场联用技术此法系日本东京三菱化工机械公司与Proudo公司联合开发成功的,首先,用一0.53T的磁场使废水中的有机分子排成一条直线,从而使有机物在随后的电和超声波处理中容易一些。在磁场处理工序之后,废水用1020kV交流电脉冲处理,以使有机物分解成较低的分子链段。然后,废水送往3个顺序相连的反应器的电解反应区。每
19、一反应器装配有用不同材料制成的电极,在50500V范围内调节直流电压,使有机分子的氧化或还原最佳化。然后,用2030kHz的超声波处理使有机物进一步分解、气化。废水最后流入处理槽,在槽中用高频(200300MHz)微波和更高频率(1020GHz)的微波与950kHz频率的超声波使有机物进一步分解,使水消毒和使无机固体聚结 31 。13 结语上述联用技术能有效地降解化学污染物,而且只要条件合适,有机物可以被彻底矿化为CO2和无机离子,是一种环境友好处理技术,具有良好的拓展和应用前景。但超声联用技术降解水体中有机污染物的研究目前主要集中在实验室中某一种有机污染物上,对多种有机污染物的混合水样的处理
20、的研究相对较少,而且降解有机污染物的机理尚不清楚,实现工业化应用仍需做大量的研究 32,33 。今后的研究方向主要为:(1)根据各种废水处理技术的特点,优势互补,开发性能优良的,廉价的与超声联用的复合废水处理技术;(2)继续研究其机理并依据其进一步提高超声降解的效率;(3)在现有的研究工作基础上总结规律,进一步扩大研究范围,采用实际水样进行连续处理,结合化学工程理论进一步研究过程的优化设计和操作规律。专论与综述 工业水处理2003-07,23(7)3ManickamSivakumar,PrashantATatake,AniruddhaBPandit.Kineticsofp-nitropheno
21、ldegradation:effectofreactionconditionsandcavita-tionalparametersforamultiplefrequencysystemJ.ChemicalEngineer-ingJournal,2002,85:327-3384YiJiang,ChristianPetrier,DavidWaiteT.EffectofpHontheultrasonicdegradationofionicaromaticcompoundsinaqueoussolutionJ.Ultra-son.Sonochem.,2002,(9):163-1685LittleC,H
22、epherMJ,E-lSharifM.Thesono-degradationofphenanthreneinanaqueousenvironmentJ.Ultrasonics,2002,40:667-6746ManickamSivakumar,AniruddhaBPandit.Wastewatertreatment:anovelenergyefficienthydrodynamiccavitationaltechniqueJ.Ultrason.Sonochem.,2002,(9):123-1317DahiE.Physicochemicalaspectsofdisinfectionofwater
23、bymeansofu-ltrasoundandozoneJ.WaterResearch,1976,(10):667-6848LindaKW,HoffmannMR.Sonolyticdegradationofozoneinaqueous9NilsunHInce,GokceTezcanli.Reactivedyestuffdegradationbycom-binedsonolysisandozonationJ.DyesandPigments,2001,49:145-15310SierkaRA,AmyGL.StudyonthedegradationofhumusbyUS/O3J.OzoneScien
24、ce&Engineering,1985,(7):47-6211NaffrechouxE,ChanouxS,PetrierC,etal.Sonochemicalandphoto-chemicaloxidationoforganicmatterJ.Ultrason.Sonochem.,2000,(7):255-25912LinJih-Gaw,Ma,Ying-Shih.Magnitudeofeffectofreactionparameterson2-chlorophenoldecompositionbyultrasonicprocessJ.JournalofHazardousMaterials,19
25、99,66(3):291-30513陈伟,范瑾初.超声-过氧化氢技术降解水中4-氯酚J.中国给水排水,2000,16(2):1-414ChematF,TeunissenPGM,ChematS,etal.Sono-oxidationtreat-mentofhumicsubstancesindrinkingwaterJ.Ultrason.Sonochem.,2001,(8):247-25015AlexDeVisscher,HermanVanLangenhove.SonochemistryoforganiccompoundsinhomogeneousaqueousoxidizingsystemsJ.
26、Ultrason.Sonochem.,1998,(5):87-9216IngaleMN,MahajaniVV.Anovelwaytotreatrefractorywaste:son-i17CarmenStavarache,YimB,VinatoruM,etal.Sonolysisofchloroben-zeneinFenton-typeaqueoussystemsJ.Ultrason.Sonochem.,2002,(9):291-296作者简介郭照冰(1972 ),南京大学环境学院2002级博士研究生。E-mail:guocumt。收稿日期2002-12-1318ChundeWu,Xinhui
27、Liu,DongbinWei,etal.PhotosonochemicaldegradationofphenolinwaterJ.WaterResearch,2001,35(16):3927-393319IrfanZShirgaonkar,AniruddhaBPandit.Sonophotochemicaldestruc-tionofaqueoussolutionof2,4,6-trichlorophenolJ.Ultrason.Sonochem.,1998,(5):53-6120LevDavydov,EttireddyPReddy,PaulFrance,etal.Sonophotocat-a
28、lyticdestructionoforganiccontaminantsinaqueoussystemsonTiO2powdersJ.AppliedCatalystB:Environmental,2001,32:95-10521TrabelstF,Ai-tLyazidiH,RastsimbaB,etal.OxidationofphenolinwastewaterbysonoelectrochemistryJ.ChemicalEngineeringScience,1996,51:1857-186522陈卫国,熊亚,彭玉凡,等.声电催化氧化降解有机污染物的基础研究J.水处理技术,2001,27(3):152-15523DeLimaLeiteRH,CongnetP,WilhelmAM,etal.Anodicoxida-tionof2,4-dihydroxybenzoicacidforwastewatertreatment:studyofultrasoundactivationJ.ChemicalEngineeringScience,2002,57:767-77824HuangH,HoffmannM
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省某废钢基地项目可行性研究报告
- 2024租赁期满后购买选择权协议
- 2025年度特色餐厅餐饮配送服务承包合同4篇
- 中国防水胶卷材项目投资可行性研究报告
- 2025年度个人创业贷款担保合同样本4篇
- 2025年涂装劳务分包合同范本大全:涂装工程安全3篇
- 2025年度个人房产抵押融资合同规范文本2篇
- 2025年度个人汽车贷款合同标准格式4篇
- 2025年度个人汽车租赁保险附加服务合同3篇
- 2025年江苏海州发展集团有限公司招聘笔试参考题库含答案解析
- CNAS实验室评审不符合项整改报告
- 农民工考勤表(模板)
- 承台混凝土施工技术交底
- 卧床患者更换床单-轴线翻身
- 计量基础知识培训教材201309
- 中考英语 短文填词、选词填空练习
- 一汽集团及各合资公司组织架构
- 阿特拉斯基本拧紧技术ppt课件
- 初一至初三数学全部知识点
- 新课程理念下的班主任工作艺术
- (完整版)企业破产流程图(四张)
评论
0/150
提交评论