版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、姓名:得分:解直角三角形命题人:罗 成CADB1、已知:如图,在ABC中,ACB90°,CDAB,垂足为D,若B30°,CD6,求AB的长2、我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航在一次巡航中,轮船和飞机的航向相同(APBD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°试求飞机的飞行距离BD(结果保留根号)3、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为,路基高度为5
2、.8米,求路基下底宽(精确到0.1米). 4、为申办2010年冬奥会,须改变哈尔滨市的交通状况。在大直街拓宽工程中,要伐掉一棵树AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在某工人站在离B点3米远的D处,从C点测得树的顶端A点的仰角为60°,树的底部B点的俯角为30°. 问:距离B点8米远的保护物是否在危险区内?5、如图,某一水库大坝的横断面是梯形ABCD,坝顶宽CD5米,斜坡AD16米,坝高 6米,斜坡BC的坡度.求斜坡AD的坡角A(精确到1分)和坝底宽AB(精确到0.1米)6. 在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了
3、如下的方案(如图1所示):(1) 在测点A处安置测倾器,测得旗杆顶部M的仰角MCE ;(2) 量出测点A到旗杆底部N的水平距离ANm; (3) 量出测倾器的高度ACh。根据上述测量数据,即可求出旗杆的高度MN。如果测量工具不变,请参照上述过程,重新设计一个方案测量某小山高度(如图2)1) 在图2中,画出你测量小山高度MN的示意图2)写出你的设计方案。 7、如图,在ABC中,C=90°,AC=5cm,BAC的平分线交BC于D,ADcm,求B,AB,BC.8、如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得CBD=60°,牵引
4、底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)9、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程需要土石多少立方米?10、某船向正东航行,在A处望见灯塔C在东北方向,前进到B处望见灯塔C在北偏西30o,又航行了半小时到D处,望灯塔C恰在西北方向,若船速为每小时20海里,求A、D两点间的距离。(结果不取近似值)11、北方向
5、10海里处的A点有一涉嫌走私船只,正以24海里小时的速度向正东方向航行为迅速实施检查,巡逻艇调整好航向,以26海里小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问需要几小时才能追上?(点B为追上时的位置)确定巡逻艇的追赶方向(精确到01°)参考数据:sin668° 09191 cos 668° 0393 sin674° 09231 cos 674° 03846 sin684° 09298 cos 684° 0368l sin706° 09432 cos706° 03322 12、 如图,沿江堤坝的横
6、断面是梯形ABCD,坝顶AD=4m,坝高AE=6 m,斜坡AB的坡比,C=60°,求斜坡AB、CD的长。参考答案1、82、解答:解:作AFBD,PGBD,垂足分别为F、G,由题意得:AF=PG=CE=5km,FG=AP=20km,在RtAFB中,B=45°,则BAF=45°,BF=AF=5,APBD,D=DPH=30°,在RtPGD中,tanD=,即tan30°=,GD=5,则BD=BF+FG+DC=5+20+5=25+5(km)答:飞机的飞行距离BD为25+5km3、18.1米 4、可求出AB= 4米84 距离B点8米远的保护物不在危险区内5
7、、 A =22 01 AB=37.8米6、1)2)方案如下:一、 测点A处安置测倾器,测得旗杆顶部M的仰角MCE ;二、 测点B处安置测倾器,测得旗杆顶部M的仰角MDE;三、 量出测点A到测点B的水平距离ABm; 四、 量出测倾器的高度ACh。根据上述测量数据可以求出小山MN的高度7、解:如图,在ABC中,C=90°,AC=5cm,AD为A的平分线,设DAC=30°,BAC=60°,B=90°60°=30°从而AB=5×2=10(cm)BCAC·tan60°5(cm)8、:解:依题意得,CDB=BAE=A
8、BD=AED=90°,四边形ABDE是矩形,(1分)DE=AB=1.5,(2分)在RtBCD中,(3分)又BC=20,CBD=60°,CD=BCsin60°=20×=10,(4分)CE=10+1.5,(5分)即此时风筝离地面的高度为(10+1.5)米9、解:(1)分别过点E、D作EGAB、DHAB交AB于G、H,四边形ABCD是梯形,且ABCD,DH平行且等于EG,故四边形EGHD是矩形,ED=GH,在RtADH中,AH=DH÷tanDAH=8÷tan45°=8(米),在RtFGE中,i=1:2=,FG=2EG=16(米),AF=FG+GHAH=16+28=10(米);(2)加宽部分的体积V=S梯形AFED×坝长=×(2+10)×8×400=19200(立方米)答:(1)加固后坝底增加的宽度AF为10米;(2)完成这项工程需要土石19200立方米10、5、解:作CHAD于H,ACD是等腰直角三角形,CH2AD设CHx,则DHx 而在RtCBH中,BCH=30o,tan30°BHx BDxx×20x155 2x3010 答:A、D两点间的距离为(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年个人留学贷款购房合同
- 2024年度企业环保解决方案提供合同
- 《基于知识工程的汽车转向系统设计》
- 2024年冰箱租赁合同
- 《基于“泳裤供区”的旋髂浅动脉穿支皮瓣游离修复四肢复杂创面的临床应用研究》
- 《JSKJ股份有限公司内部控制问题研究》
- 《基于Z-score模型的龙光控股债券违约风险研究》
- 黄金卷03-2023年高考化学模拟卷(原卷版)2
- 2024年度xyz与789就区块链供应链管理的合同
- 2024年合肥客运从业资格证考试试题及答案详解
- 《新能源汽车概论》课件-6新能源汽车空调系统结构及工作原理
- 2024年共青团入团考试题库(附答案)
- 田径运动会各种记录表格
- 产科新生儿疫苗接种课件
- 企业信息管理概述课件
- 室外健身器材投标方案(技术方案)
- 足浴店店长聘用合同范本
- tubeless胸科手术麻醉
- 电商免责声明范本
- 飞行科普知识讲座
- 社区健康服务与管理教案
评论
0/150
提交评论