版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、几何提优二与角相关的问题阅读与思考角也是一种基本的几何图形,凡是由直线组成的图形都出现角. 角既可以看成有公共端点的两条射线组成的图形,也可以看成是一条射线绕着端点从一个位置旋转到另一个位置所成的图形.按角的大小可以分成锐角、直角和钝角. 由于直角和平角在角中显得特别重要,所以处于不同位置,但两角的和是一个直角或是一个平角的角仍然得到我们的特别关注. 两角之和为直角的,这两个角叫做互为余角;而两角之和为平角的,这两个角叫做互为补角,余角和补角的概念及其应用在几何计算和证明中都有十分重要的地位.解与角有关的问题常用到以下知识与方法:1. 角的分类;2. 角平分线的概念;3. 互余、互补等数量关系
2、角;4. 用方程的观点来进行角的计算.例题与求解 【例1】如图,在3×3的网格上标出了1和2,则 .解题思路:对图形进行恰当的处理,通过拼补求出的值.【例2】如果与互补,且,则下列表示的余角的式子中:;. 其中正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个解题思路:彼此互余的角只要满足一定的数量关系即可,而与位置无关. 【例3】已知,OC是不在直线OA,OB上的任一条射线. OM,ON分别平分AOC,BOC. 求MON的大小.(题目中考虑的角都小于平角)解题思路:因OC位置不确定,故分类讨论是解本例的关键. 【例4】钟表在12点钟时三针重合,经过x分钟秒针第一次将分钟
3、和时针所夹的锐角平分,求x的值.解题思路:把秒针第一次将分钟和时针所夹的锐角平分所得的两个角用x的代数式表示,通过解方程求出x的值. 【例5】(1)现有一个19°的“模板”(如图),请你设计一种办法,只用这个“模板”和铅笔在纸上画出1°的角来. (2)现有一个17°的“模板”与铅笔,你能否在纸上画出一个1°的角来? (3)用一个21°的“模板”与铅笔,你能否在纸上画出一个1°的角来?对(2)(3)两问,如果能,请你简述画法步骤;如果不能,请你说明理由.解题思路:若只连续使用模板,则得到的是一个19°(或17°或21
4、°)的整数倍的角,其实,解题的关键是在于能否找到19°(或17°或21°)的一个倍数与某个特殊角的某个倍数相差1°. 【例6】如图所示,O是直线AB上的一点,COD是直角,OE平分BOC.(1)如图,若,求DOE的度数;(2)在图中,若,直接写出DOE的度数 (用含的代数式表示);(3)将图中的DOC绕顶点O顺时针旋转至图的位置. 探究AOC和DOE的度数之间的关系,写出你的结论,并说明理由; 在AOC的内部有一条射线OF,满足,试确定AOF与DOE的度数之间的关系,说明理由 图 图 解题思路:(1)利用互余、互补关系易求出DOE的度数;(2)
5、先根据DOE与COE的互余关系列出相应的关系式,然后用BOC表示出COE,再根据互补角的关系用表示出所求角的度数;(3)可设BOC为一个未知数,分别表示出AOC与DOE,可得相应关系;结合把所给等式整理为只含所求角的关系式即可.能力训练A 级1. 已知一个角的补角等于这个角余角的6倍,那么这个角等于 . 2. 如图,那么不大于90°的角有 个,它们的度数之和是 .3. 如图,若,则等于 .4. 如图,O是直线AB上一点,OE平分BOD,则图中彼此互补的角有 对.5. 一个角的补角的是6°,则这个角是( )A. 68° B. 78° C. 88°
6、 D. 98°6. 用一副三角板可以画出大于0°且小于176°的不同角度有( )种A. 9 B. 10 C. 11 D. 127. 如图,若,1是锐角,则1的余角是( )A. B. C. D.8. 如图,OD是COB的平分线,OE是AOC的平分线,设,则与的余角相等的角是( )A.COD B.COE C.DOA D.COA9. 如图,已知,OD平分AOB,且,求AOB的度数. 10. 如图,已知AOB与BOC互为补角,OD是AOB的平分线,OE在BOC内,. 求EOC的度数.11. 已知,OC平分AOB,OE平分COD. 求AOE的大小.12. 如图,已知OB,O
7、C,OD为AOE内三条射线. (1)图中共有多少个角? (2)若OB,OC,OD为AOE四等分线,且图中所有锐角的和为400°,求AOE的度数. (3)若,求图中所有锐角的和.B 级1. 已知一个角的补角比这个角余角的3倍大10°,则这个角的度数是 . 2. ,中有两个锐角和一个钝角,其数值已经给出,在计算的值时,有三位同学分别算出了23°,24°,25°这三个不同的结果. 其中只有一个是正确的答案,则 . 3. 如图,点O在直线AB上,OC,OD,OE,OF是位于AB同一侧的射线,那么在这个图形中,不大于平角的角共有 个. 4. 如图,射线O
8、C,OD,OE,OF分别平分AOB,COB,AOC,EOC,若,则 .5. 4点钟后,从时针到分针第二次成90°角,共经过( )分钟(答案四舍五入到整数)A. 60 B. 30 C. 40 D. 336. 如图是一个3×3的正方形,则图中的和等于( )A. 270° B. 315° C. 360° D. 405°7. 已知,OM,ON,OP分别是AOB,BOC,AOC的平分线,则下列各式中成立的是( )A. B. C. D.以上情况都有可能8. 如图,AOC是直角,且OB,OD分别是AOC,BOE的平分线,则AOE等于( )A. 11
9、1.5° B. 138° C. 134.5° D. 178° 9. 如图,在直线AB上取一点O,在AB同侧引射线OC,OD,OE,OF,使COE和BOE互余,射线OF和OD分别平分COE和BOE. 求证:.10. 如图,A1OA11是一个平角,. 求的度数. 11. 在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的选择中心). 若现在时间恰好是12点整,问经过多少秒后,OAB的面积第一次达到最大?答案例145° 提示:如图,通过拼补得1+2=45°.例2B提示:(90°)+=90°符合;(90°
10、;)+=+90°=180°90°=90°符合;符合.故能表示的余角.13OM、ON平分AOC,BOC,AOM=COM=,CON=BON=(1)如图,若OC在AOB内,设BOC=x,则图图图例6 (1),且与互为相反数。且。,即,(2)有两种情况,如图当在上时,;当在的延长线上时,综上可知,(3) 作图如图,结论正确,设,则,当然对于我们也不难找出其值不为定值的原因。,变化,其值也变化A级1 或提示:当,在点两侧时,;当,在同一侧时,2 203 41.6 提示:所有线段长度总和为AOC80°x,MONMOCNOC40°(2)如图,若OC
11、在AOB内,设BOCx,则AOC80°xMONMOCNOC40°(3)如图,若OC在AOB内,设BOCx,则AOC280°xMONMOCNOC140°(4)如图,若OC在AOB内,设BOCx,则AOCx80°MONNOCMOC40°综上所述:MON40°或 140°例4x提示:显然x的值大于1小于2,依题意得6x360(x1)360(x1)0. 5x例5提示:设“模板”角度为,假设可由k个角与t个 180°角画出1°的角来,即k,t满足等式k180t1(1)当19°时,取k19,t2,
12、即用模板连续画出19个19°的角,得到361°的角,去掉360°的周角,即得1°的角(2)当17°时,即17k一180t1,此时,k53,t5是一组解,即用模板连续画53个17°的角,得到901°的角,除去两个周角和一个平角,即得1°的角(3)当21°时,即21k180t1无整数解,不能用21°的模板与铅笔画出1°的角例6 (1) BOC180°AOC180°30°150°又QE平分BOC,COEBOC75°,DOE90°75
13、°15°(2)DOE90°(3)AOC180°2COE180°2(90°DOE)2DOE;设DOEx,AOFy则AOC4AOF2DOE4AOF2x4y2BOEAOF2COEAOF2 ( 90°DOE) AOF2 ( 90°一x )y180°一2xy故 2x4y180°2xy,即 4x5y180°所以 4DOE5AOF180°A级172°210 450° 提示:一共有10个角,其中AOE90°,BOD45°,AOB十BOE90°
14、,AOCCOE90°,AODDOE90°,BOCCOD45°故这10个角的度数和为90°×445°×2360°90450°33046 提示:AOC和BOC,AOD和BOD,AOE和BOE,AOE和DOE,AOE和COD,AOD和COE5B 6A7C 8B9114° 提示:设AOCx°,是BOC2x°,AOD(x)°,COD(x)°,AOBAOCBOC114°10设AODBODx,则BOC180°2x又BOEEOC,BOEBOC(180&
15、#176;2x)又BODBOEDOE72°,x(180°2x)72°,解得x36°则EOCBOC(180°2x)72°11(1)如图,若OD在AOB内时,AOCBOCAOB40°,COEDOECOD30°,AOEAOCCOE70°(2)如图,若OD在AOB内时,同理,AOC40°,OOE30°,AOEAOCCOE10°综上所述:AOE70°或10°12(1)共有:432l10 个角(2)AOE80°(3)所有锐角度数和为:416°B级150° 2345° 315464°提示:设EOFCOFx,则AOE2xBOCAOC2xxx4x,CODBODBOC2x,又FODFOCCODx2x3x24°,x80°,AOB8x64°5D6D沿AB对折,上下图形能够完全重合,则19482690°7B8D9提示:COEBOE90°,DOF45°,AOFBOD135°10由题中条件知A3OA2A2OA12°,A4OA3A3O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有创意的年终总结
- 物料盘点标准化流程:精确管理
- 数码店外墙涂料施工合同
- 工业园区外围墙施工协议
- 城市商业中心停车场施工合同
- 旅游景区运营招投标合同模板
- 五金交电招投标管理要点
- 保险公司办公费用内控机制
- 校园消防演练方案
- 2022年大学海洋科学专业大学物理下册月考试题-含答案
- 七年级英语上培优扶差记录表
- 全国防返贫监测信息系统业务管理子系统操作手册
- 2022年数学广角内容解读及教学思考
- 二级减速器箱体盖工艺卡片
- 互联网高速专线电路开通测试报告[宝典]
- 虎牌电饭煲中文使用说明书
- 餐饮合同范本
- 人教版初中地理七年级上册《地球自转》说课稿
- 高职院校课程标准模板
- 注塑品质检验标准
- 无铅压电陶瓷项目可行性研究报告-可参考案例-备案立项
评论
0/150
提交评论