都是张数惹得“祸”_第1页
都是张数惹得“祸”_第2页
都是张数惹得“祸”_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、都是张数惹得“祸” 也谈烙饼问题一、问题提出“五段式”教研活动走进了濉溪路小学,做课的董辉老师带来一节烙饼问题,引起与会老师的激烈讨论。问题情境:小红的妈妈在厨房里烙饼,这口平底锅每次只能烙2 张饼,两面都要烙,每面3 分钟,小红和爸爸、妈妈各吃一张饼,怎样才能让他们尽快吃上饼?焦点之一:在探究烙3张饼所需时间时,绝大部分学生认为所需时间是12分,给出理由也“相当充分”每张锅只能烙2张(需6分钟),剩下1张再烙(需6分钟),一共是12分钟;部分老师认为,根据学生的生活经验和认知特点,甚至会出现无一人知道烙3张饼最短时间是9分钟。如果出现这些情况,执教老师该如何应对?焦点之二:学生在老师的“帮扶

2、”下,通过实验、分析、推理、归纳等一系列的数学活动总结出烙饼问题的数学模型(也可以说是公式):            饼的张数×3=所需的时间试问一下:学生真正理解这个模型的含义了吗,能不能准确地表述出烙饼的过程(尤其是3张饼的情况)?谁也不能给出肯定的答案。焦点三:如果一张锅能烙3张、4张、5张、,又该如何去烙?有没有规律可循,模型建立?做课的董老师在试教时,也做了大量的有益的尝试,效果也不是很明显。与会的老师们也鲜见有讨论类似情况的课例,也不禁会产生疑问:是不是讨论一张锅

3、能烙3张、4张、5张、的情况没有任何数学价值,其背后的真正原因又是什么?针对上述问题,可谓是仁者见仁,智者见智。在这里,笔者也苦思良久,总感觉是饼的张数“惹得祸”,如果我们从“饼的面数”入手,教学效果可能会峰回路转,柳暗花明。二、解决对策烙饼问题不妨考虑从面数入手,这比张数更本质。与其说烙的是张数,不如说烙的是面数更为直接、更为本质,学生也能够理解和接受。教师在出示问题并让学生读取数学信息的时候,不仅指出每次烙2张饼,更要进一步地强调每次烙的是2个面,而且只能烙2个面,让学生在头脑中留下“烙面数”印象,为解决烙3张饼问题埋下伏笔。接着教师顺势引导学生理解烙3张饼其实就是烙6个不同的面,而起每次

4、只能烙2个面,从而很容易得出:烙3张饼的时间是,6÷2×3=9(分钟)。当学生真正理解烙饼的本质就是烙的面数,而且每次只烙2个不同的面的时候,便水到渠成地掌握烙3张饼的过程,并能清楚地表述出来。比如,学生会把3张饼的6个面进行标识(像A1、A2;B1、B2;C1,C2之类),并在保证不能取同一张饼两个面的情况下,两两组合即把3张饼烙熟,这也是烙3张饼的最佳方法。当烙的饼数为:4张、5张、6张、时,教师还应该引导学生从面数考虑,先计算出总面数,再除以2(每次可烙的面数),再乘3(每次烙的时间),便求出所需的最短时间。数学模型也随即建立起来:   

5、    总面数÷2×3=所需的时间,又因为“总面数=饼的张数×2”,所以就有       饼的张数×3=所需的时间。总之,学生理解这个模型的真正含义后,就能很快计算出烙饼所需的时间( 总面数÷2×3),再动手操作验证或语言表述过程都会显得那么轻松流畅。学生一旦把握住烙饼的本质就是烙饼的面数,当我们改变烙饼的形式时每张锅最多可烙3张饼、4张饼、5张饼等等,学生也能发现规律,推导归纳出相应的数学模型,即 总面数÷每次可烙的面数&#

6、215;每次烙的时间=所需的时间, ( 用字母表示:M ÷ m × t = T ) 当m=2时,就是每张锅烙2张饼的情况,无论饼的张数是单,是双,面数M总是双数,M ÷ 2等于整数,也就是说锅总能被充分利用,也就存在最优化策略。当m=3、4、5、时,M ÷ m结果是有余数的,锅就不能保证被充分利用,就不存在节省时间,节约成本的最优化问题,这也许是我们不去讨论一张锅能烙3张饼、4张饼、5张饼、的真正原因吧。 另辟蹊径,总能柳暗花明。如果我们试着从面数去探究烙饼问题,改变一下教学思路,重新设计教学过程,如何引导让学生从面数去考虑

7、烙饼问题,如何将一张锅可烙2张饼、3张饼、进行有效整合去发现规律,带着这些问题再去课堂实践,或许会出现令人耳目一新的教学景象呢?我想这也是一件非常有意义的事,值得一试。 三、一点感想把握数学的本质,通晓它的变化形式,我们的数学课堂才会充满智慧和灵动这也是本节课给我的最大感触和收获。还是从烙饼问题谈起。无论每张锅可烙2张、3张、4张、,还是用一张锅去烙不同数量的饼,变化的是每张锅可烙饼的张数或同一锅中饼的不同名称,不变的是每次可烙的面数和要烙不同的面。变得是形式,不变的是本质。从最优化的角度来看,烙饼问题和打电话问题在本质上也是一致的。一个是保证锅不能空着,一个是保证人不能闲着,都是最

8、大限度地利用时间,利用成本,这也是解决问题的关键所在。 从余数理论的角度来看,烙饼问题与找次品、抢数在原理上也是相通的,都是按余数分类讨论。 烙饼问题在解决一张锅只能烙2张饼时,用饼数除以2,余数是1或0。余数是0时,饼数为双数,2张2张地烙,所需时间最短;余数是1时,饼数为单数,2张2张地烙,剩下3张按最佳方法烙,所需时间最短。 找次品先把物品尽量3等分,使得最多的一份和最少的一份相差1。任何数除以3,余数是2或1或0。物品数除以3,余0时,平均分成3份;余1时,最多的一份和最少的一份相差1;余2时,把2均分到其中2份,使得最多的一份和最少的一份也相差1。 抢数不妨以抢3为例,规则:两人从1开始轮流往后报数,每次至少报1个数,最多报2个数,谁先抢到指定数谁赢。这里运用余数理论,掌握获胜策略。数据的个数除以3,余数是2或1或0。余数为0时,后报者必胜;余数为1或2时,先报完余数者,获胜。正如天津特级教师张菁所说:“数学是一个动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论