专题五万有引力定律人造地球卫星_第1页
专题五万有引力定律人造地球卫星_第2页
专题五万有引力定律人造地球卫星_第3页
专题五万有引力定律人造地球卫星_第4页
专题五万有引力定律人造地球卫星_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题五 万有引力定律 人造地球卫星一、万有引力定律及其应用1、 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。(1687年)叫做引力常量,它在数值上等于两个质量都是1kg的物体相距1m时的相互作用力,1798年由英国物理学家卡文迪许利用扭秤装置测出。2、定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离对于均匀的球体,r是两球心间的距离当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公

2、式算出F近为无穷大。3、地球自转对地表物体重力的影响。重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力重力实际上是万有引力的一个分力另一个分力就是物体随地球自转时需要的向心力,如图所示 甲重力大小:两个极点处最大,等于万有引力;赤道上最小,其他地方介于两者之间,但差别很小。重力方向:在赤道上和两极点的时候指向地心,其地方都不指向地心,但与万有引力的夹角很小。二、开普勒行星运动三定律简介(轨道、面积、比值)丹麦开文学家开普勒信奉日心说,对天文学家有极大的兴趣,并有出众的数学才华,开普勒在其导师弟谷连续20年对行星的位置进行观测所记录的数据研究的基楚上,通过四年多的刻

3、苦计算,最终发现了三个定律。第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上;第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等;第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等即3、天体运动1、解决天体圆周运动的两条基本思路(1)地面附近的万有引力近似等于物体的重力:G= mg GM=gR2 (黄金代换式 (2)天体运动都可以看成近视的匀速圆周运动,其向心力由万有引力提供2、天体表面重力加速度问题通常的计算中因重力和万有引力相差不大,而认为两者相等,即m2gG, g=GM/R2常用来计算星球表面重力加速度的大小,在地球的

4、同一纬度处,g随物体离地面高度的增大而减小,即gh=GM/(R+h)2,比较得gh=()2·g设天体表面重力加速度为g,天体半径为R,由mg=得g=,由此推得两个不同天体表面重力加速度的关系为3、计算中心天体的质量某星体m围绕中心天体m中做圆周运动的周期为T,圆周运动的轨道半径为r,则:由得:例如:利用月球可以计算地球的质量,利用地球可以计算太阳的质量。可以注意到:环绕星体本身的质量在此是无法计算的。4、计算中心天体的密度=由上式可知,只要用实验方法测出卫星做圆周运动的半径r及运行周期T,就可以算出天体的质量M若知道行星的半径则可得行星的密度5、表征卫星运动的物理量:线速度、角速度、

5、周期等:(1)向心加速度与r的平方成反比。=当r取其最小值时,取得最大值。a向max=g=9.8m/s2(2)线速度v与r的平方根成反比v=当r,v当r取其最小值地球半径R时,v取得最大值。 vmax=7.9km/s(3)角速度与r的三分之三次方成百比=当r,当r取其最小值地球半径R时,取得最大值。max=1.23×103rad/s(4)周期T与r的二分之三次方成正比。T=2当r,T当r取其最小值地球半径R时,T取得最小值。 Tmin=2=284 min(5卫星的能量:(类似原子模型r增v减小(EK减小 p 增加 ,所以 增加 ; 需克服引力做功越多,地面上需要的发射速度越大 6、宇

6、宙速度及其意义三个宇宙速度的值分别为第一宇宙速度(又叫最小发射速度、最大环绕速度、近地环绕速度):物体围绕地球做匀速圆周运动所需要的最小发射速度,又称环绕速度,其值为: 第一宇宙速度的计算方法一:地球对卫星的万有引力就是卫星做圆周运动的向心力G=m,v=。当h,v,所以在地球表面附近卫星的速度是它运行的最大速度。其大小为rh(地面附近)时,=79×103m/s方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力当rh时ghg所以v1=79×103m/s第二宇宙速度(脱离速度):如果卫生的速大于而小于 ,卫星将做椭圆运动。当卫星的速度等于

7、或大于的时候,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造行星,或飞到其它行星上去,把叫做第二宇宙速度,第二宇宙速度是挣脱地球引力束缚的最小发射速度。第三宇宙速度:物体挣脱太阳系而飞向太阳系以外的宇宙空间所需要的最小发射速度,又称 逃逸速度,其值为:7、同步卫星(所有的通迅卫星都为同步卫星)同步卫星。“同步”的含义就是和地球保持相对静止(又叫静止轨道卫星),所以其周期等于地球自转周期,既T=24h,特点地球同步卫星的轨道平面,非同步人造地球卫星其轨道平面可与地轴有任意夹角,而同步卫星一定位于赤道的正上方,不可能在与赤道平行的其他平面上。这是因为:不是赤道上方的某一轨道上跟着地球的自转同步

8、地作匀速圆运动,卫星的向心力为地球对它引力的一个分力F1,而另一个分力F2的作用将使其运行轨道靠赤道,故此,只有在赤道上空,同步卫星才可能在稳定的轨道上运行。地球同步卫星的周期:地球同步卫星的运转周期与地球自转周期相同。同步卫星必位于赤道上方h处,且h是一定的得故地球同步卫星的线速度:环绕速度由得运行方向一定自西向东运行类型题: 双星问题 宇宙中往往会有相距较近,质量可以相比的两颗星球,它们离其它星球都较远,因此其它星球对它们的万有引力可以忽略不计。在这种情况下,它们将围绕它们连线上的某一固定点做同周期的匀速圆周运动。这种结构叫做双星。由于双星和该固定点总保持三点共线,所以在相同时间内转过的角

9、度必相等,即双星做匀速圆周运动的角速度必相等,因此周期也必然相同。由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等,由F=m2r可得,于是有列式时须注意:万有引力定律表达式中的r表示双星间的距离,按题意应该是L,而向心力表达式中的r表示它们各自做圆周运动的半径,在本题中为r1、r2,千万不可混淆【例题】在天文学中,把两颗相距较近的恒星叫双星,已知两恒星的质量分别为m和M,两星之间的距离为L,两恒星分别围绕共同的圆心作匀速圆周运动,如图所示,求恒星运动的半径和周期。o解析:两颗恒星在万有引力作用下围绕共同点O(物理学上把它叫做质心作匀速圆周运动,O点在两颗恒星的连线上,设

10、两颗星到O的距离分别为r、R,它们运动的周期为T,由万有引力定律和牛顿第二定律对质量为m的恒星有对质量为M的恒星有r+R=L由以上三式解得 类型题: 卫星的追及问题 【例题】A、B两行星在同一平面内绕同一恒星做匀速圆周运动,运行方向相同,A的轨道半径为r1,B的轨道半径为r2,已知恒星质量为,恒星对行星的引力远大于得星间的引力,两行星的轨道半径r1r2。若在某一时刻两行星相距最近,试求:(1)再经过多少时间两行星距离又最近?(2)再经过多少时间两行星距离最远?解析:(1)A、B两行星如右图所示位置时距离最近,这时A、B与恒星在同一条圆半径上,A、B运动方向相同,A更靠近恒星,A的转动角度大、周

11、期短,如果经过时间t,A、B与恒星连线半径转过的角度相差2的整数倍,则A、B与恒星又位于同一条圆半径上,距离最近。解:(1)设A、B的角速度分别为1、2,经过时间t,A转过的角度为1t,B转过的角度为2t。A、B距离最近的条件是:1t-2t=。恒星对行星的引力提供向心力,则:,由得得出:,求得:。(2)如果经过时间,A、B转过的角度相差的奇数倍时,则A、B相距最远,即。故。把1、2代入得:点评:太阳系有九大行星,它们之间有相对运动,如要知道哈雷彗星下次光顾地球是什么时间,就要分析两运动间的角速度关系,本题关键是正确写出两行星相距离最近和相距最远的条件。类型题: 人造卫星的一组问题 【例题】“神

12、舟三号”顺利发射升空后,在离地面340km的圆轨道上运行了108圈。运行中需要多次进行 “轨道维持”。所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小方向,使飞船能保持在预定轨道上稳定运行。如果不进行轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能变化情况将会是A动能、重力势能和机械能都逐渐减小B重力势能逐渐减小,动能逐渐增大,机械能不变C重力势能逐渐增大,动能逐渐减小,机械能不变D重力势能逐渐减小,动能逐渐增大,机械能逐渐减小解析:由于阻力很小,轨道高度的变化很慢,卫星运行的每一圈仍可认为是匀速圆周运动。由于摩擦阻力做负

13、功,根据机械能定理,卫星的机械能减小;由于重力做正功,根据势能定理,卫星的重力势能减小;由可知,卫星动能将增大。这也说明该过程中重力做的功大于克服阻力做的功,外力做的总功为正。答案选D【例题】 如图所示,某次发射同步卫星时,先进入一个近地的圆轨道,然后在P点点火加速,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P,远地点为同步轨道上的Q),到达远地点时再次自动点火加速,进入同步轨道。设卫星在近地圆轨道上运行的速率为v1,在P点短时间加速后的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在Q点短时间加速后进入同步轨道后的速率为v4。试比较v1、v2、v3、v4的大小,并用小于号将

14、它们排列起来_。v1解析:根据题意在P、Q两点点火加速过程中,卫星速度将增大,所以有v2>v1、v4>v3,而v1、v4是绕地球做匀速圆周运动的人造卫星的线速度,由于它们对应的轨道半径r1< r4,所以v1>v4。把以上不等式连接起来,可得到结论:v2>v1>v4>v3。(卫星沿椭圆轨道由PQ运行时,由于只有重力做负功,卫星机械能守恒,其重力势能逐渐增大,动能逐渐减小,因此有v2>v3。)【例题】发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3。轨道1、2相切于Q点。轨道2、3

15、相切于P点(如图),则当卫星分别在1,2,3,轨道上正常运行时,以下说法正确的是()PA卫星在轨道3上的速率大于在轨道上的速率B卫星在轨道3上的角速度小于在轨道上的角速度C卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度D卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度解析:从动力学的角度思考,卫星受到的引力使卫星产生运动的加速度( ),所以卫星在轨道上经过点时的加速度等于它在轨道上经过点时的加速度,卫星在轨道上经过点时的加速度等于它在轨道上经过点时的加速度。必须注意,如果从运动学的角度思考( ),由于卫星在不同的轨道上经过相同点时,不但线速度、角速度不同,而且轨道半径(曲率半径)不同,所以不能做出判断。案: B 、 D 【例题】 欧洲航天局用阿里亚娜火箭发射地球同步卫星。该卫星发射前在赤道附近(北纬5°左右)南美洲的法属圭亚那的库卢基地某个发射场上等待发射时为1状态,发射到近地轨道上做匀速圆周运动时为2状态,最后通过转移、调试,定点在地球同步轨道上时为3状态。将下列物理量按从小到大的顺序用不等号排列:这三个状态下卫星的线速度大小_;向心加速度大小_;周期大小_。解析:比较2、3状态,都是绕地球做匀速圆周运动,因为r2<r3,所以v3<v2;比较1、3状态,周期相同,即角速度相同,而r1<r3由v= r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论