北师大版数学五年级上册《点阵中的规律》教案_第1页
北师大版数学五年级上册《点阵中的规律》教案_第2页
北师大版数学五年级上册《点阵中的规律》教案_第3页
北师大版数学五年级上册《点阵中的规律》教案_第4页
北师大版数学五年级上册《点阵中的规律》教案_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.北师大版数学五年级上册?点阵中的规律?教案教学内容:北师大版小学数学五年级上册。教科书第82、83页。课标分析:本节课的主要内容是使学生能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联络,开展学生的归纳与概括的才能,浸透数学建模的思想,从中感受数学文化的魅力。教材分析:本课的内容是独立成篇的,这节课与本单元的其它知识之间没有必然的前后联络,是一节相对独立的数学活动课。教材提供的学习内容对于五年级的学生来说比较容易。但本课知识虽然简单,却是帮助学生建立数学模型的好题材,即是让学生能在观察活动中,发现点阵中隐含的规律,又是让学生体会到图形与数的联络,开展学生归纳与概括才能,浸透数学建模思

2、想。学生分析:1、学生的知识根底五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深化的认识。但是学生对利用图形研究数,寻找数和图形之间的联络,还有困难。学生对线围成的根本图形有深化的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。2、学生的才能根底学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探究图形的规律。因此五年级学生具备一定的观察才能、抽象概括才能、逻辑推理才能等。然而小学生的思维特点是从详细形象思维逐步向

3、抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经历的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。教学目的:1能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联络。2、培养学生推理、观察、归纳和概括才能。3、感受数形结合的神奇之美,并获得我能发现之成功体验。教学重点:探究发现点阵中的规律。教学难点:总结概括规律。教学准备:课件,五子棋,磁扣等。教法学法:1、老师教学方法:让学生独立或合作式探究规律,鼓励学生有自己的发现、有不同的发现。尽量减少老师的介入2、学生学习方法:大胆让学生画一画、摆一摆、算一算,让学生多角度探究规律,充分感受

4、美图美思教学过程:一、展示图片,引出课题1、展示图片,投影今天老师给大家带来了几幅图片,请同学们欣赏。师:这些图片有什么特点?生:好似都是由点组成的。师:是呀,不要小看了这样一个小小的点,点是几何图形中最根本的图形,许许多多的点按照一定的规律排列起来就构成了点阵。早在2019多年前,古希腊的数学家们就是从这样一个小小的点开场研究,并且发现了有许多个这样的点组成的点阵中许多有趣的规律。这节课,我们也来尝试研究点阵的规律。板书课题点阵中的规律。二、细心观察,探求规律1、出示正方形点阵,探究正方形点阵的规律。A、第一个规律。师:出示点阵,这就是他们当时研究过的一组点阵,请大家用数学的目光仔细观察,考

5、虑这样两个问题:出示考虑题指名读1每个点阵可以看成什么图形?2每个点阵中分别有多少个点?你是怎样观察出来的?小组讨论,指名答复。师:每个点阵可以看成什么图形?正方形,同意吗?生1:我认为第一个点阵不能看成一个正方形,是一个圆形。师:其他同学也同意他的观点吗?师:其实第一个点阵虽然只是一个点,但是我们可以把它看成边长是1的小正方形。是吗?师:每个点阵中分别有多少个点?生2:第一个点阵有1个点,第二个点阵有4个点,第三个点阵有9个点,第四个点阵有16个点。师:你能说一说你是怎么得到每个点阵中点的个数的吗?你是怎样观察出来的?生:我是通过数出每个点阵中点的个数得到的。师:谁还有不同的方法?有没有更快

6、一些的方法?生:我是通过计算得到的。师:能详细说一说是怎样通过计算得到的吗?生:第一个点阵有1个点;第二个点阵横着看,每行有2个点,有2行,共有224个点;第三个点阵每行有3个点,有3行,共有339个点;第4个点阵每行有4个点,有4行,共有4416个点。师:同学们如今你们发现正方形点阵的规律了吗?点阵的序号与它的点的个数算式有没有关系?有什么关系?假如用字母n来表示点阵的序号,那么正方形点阵点的个数是多少呢?生:我们分析了前面几个点阵图的特点,认为在这个点阵图中,点的个数的规律是:11,22,33,44,也就是nn 师:这种数法真是又快又方便!照这样下去,能不能根据你们的发现画出第5个点阵呢?

7、学生画,指名说,老师投影显示师:第6个呢、第7个第100个点阵的点的个数都能瞬间求出来。也就是说:是第几个点阵,就用几乘几板书师:假如一个点阵它有81个点,它应该是第几个点阵?每行有几个点?每列有几个点?这个画点阵的过程虽然简单,但表达了由数形的转换。培养了学生主动进展数形转换的意识。B、第2个规律师:刚刚我们是怎样观察的?横着数和竖着数正方形点阵还有没有其它的观察方法呢?能不能换个角度观察?斜着看又可以得到什么新的与序号有关的算式呢?请同学们独立考虑,写出算式,然后汇报。投影观察并考虑1分别用算式表示每个点阵点的个数。2你发现了什么规律?学生汇报,老师板书第1个:1=1第2个:1+2+1=4

8、第3个:1+2+3+2+1=9第4个:1+2+3+4+3+2+1=16第N个:1+2+3+N+3+2+1师:谁发现什么规律呢?生:如第2个点阵就从1加到2再加回来,第3个点阵就从1加到3再加回来,第4个点阵就从1加到4再加回来。师小结:第几个点阵就从1连续加到几,再反过来加回到1这个规律。刚刚是横竖数,第几个点阵就是几乘几。C、第3个规律师:刚刚同学们发现了点阵中的两个规律,这些点阵中还有其它的规律吗?还能换个角度去考虑吗?出示教材第82页第3题图,老师把第5个点阵中的点用五条折线划分,这样划分后,看看你又有什么新发现呢?师:我们把第1个折现内的点看成第一个点阵,该用什么算式表示?其他呢?小组

9、讨论,列出算式,全班汇报。小组代表汇报。生:总结每用折线画一次后,点阵中的个数是11 134 1359 135716师:总结这样划分后,点阵中的规律是:1,13,135,1357,师:第1个点阵是1,第2个点阵是在第1个的根底上多3个,第3个点阵呢? 有的学生可能说:这次都是奇数相加。老师问:从奇数几加起?加几个?是随意的几个奇数相加吗?通过这样的提问,引导学生说出第几个点阵就从1开场加几个连续奇数。师:真了不起。这种划分方法,我们可以叫做折线划分法。第几个点阵,就是从1开场加几个连续奇数。通过研究点阵,我们发现这组正方形点阵中有很多规律。这3种规律是从不同的角度观察出来的,无论你从什么角度去

10、观察,得到的结论都与它的序号有关系,所以我们以后再研究点阵的时候,都要想一想跟它的序号有什么关系,这样才能更简单。在这里,老师不是让学生发现规律就完毕了,而是让学生活学活用这些规律。让学生体会到我们刚刚发现的正方形点阵中的规律,其实就是一个完全平方数的规律,它可以应用到所有的完全平方数。刚刚这3种方法,哪一种更简便?你更喜欢哪一种?那么我们再研究正方形点阵的时候,用哪一种更简便?但点阵是丰富的,多变的,不仅只有正方形点阵,还有其他图形的点阵。这时,我们就需要开拓自己的思维,多想一些方法来研究它们与序号之间的关系。有没有兴趣再研究其他图形的点阵?在刚刚的新课教学的环节中,学生经历了观察、考虑、合

11、作、交流、表达等过程,培养了观察才能、想象才能、概括才能。并深化体验到数与形,数与式,式与式之间的联络,培养学生利用数形结合的思想来解决问题的意识和才能。三、牛刀小试1. 课件出示教材第83页试一试第1题师:你们能用刚学过的几种方法中发现这个点阵的规律吗?生:竖排横排:12,23,34,45 师:与它们的序号有什么关系?都是序号和它后面相邻的两个自然数的乘积。在点子图上画出第5个点阵。小组交流,研究:上面的点阵还有其他的规律吗?生:1两个两个数:12,32,62,102,152 2斜着一层一层数:1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1 2.师:同学们真擅

12、长发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵,我们研究他们,同样会有很大的收获。看看,这是一组什么形状的点阵?课件出示试一试第2题三角形点阵图你能用一层一层数的方法,表示你发现的规律吗?展示,根据你发现的规律画出第五个点阵。生;1,1+2,1+2+3,1+2+3+4师:其他同学看明白了吗?有什么规律?第几个点阵,就从1加到几。上面的点阵还有其他的规律吗?学生考虑,指名说。投影显示四、兴趣优在:课件出示教材第83页练一练第2题:按规律画出下一个图形。师:这道题就象梅花桩,指第一个,走了几个梅花桩?生:3个。师:指第二个,共走了几个梅花,增加几个桩?生:7个,增加了4个。师:

13、指第三个,共走了几个梅花桩,又增加了几个桩?生:13个,又增加了6个。师:假如再往下走,你们想想会再多走几个桩,你能写出算式吗?写完算式,学生自己独立画出点阵。小组合作,讨论点阵中蕴涵的规律,然后汇报交流。生:交流,探究总结规律这一题与前几个题区别很大,前几题的点阵可以看作规那么的几何图形,这一题点阵图不规那么,要画出下一个图形,既要抓住数量的变化,又要抓住形状的变化。进一步体会到数形结合的重要。五、知识拓展欣赏生活中的点阵图片。考虑:生活中有哪些地方运用点阵的知识?座位、站排做操、楼房的窗子等。师:点阵不只是点,很多有规律的排列,都可以看成点阵。投影跳棋、围棋、十字绣、花坛里的鲜花、水晶灯等

14、图片。六、课堂小结师:同学们今天学习了这么多的点阵,有没有收获,哪些收获?死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生才能开展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为进步学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背与进步学生素质并不矛盾。相反,它恰是进步学生语文程度的重要前提和根底。我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写

15、不出像样的文章呢?吕叔湘先生早在1978年就锋利地提出:“中小学语文教学效果差,中学语文毕业生语文程度低,十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!寻根究底,其主要原因就是腹中无物。特别是写议论文,初中程度以上的学生都知道议论文的“三要素是论点、论据、论证,也通晓议论文的根本构造:提出问题分析问题解决问题,但真正动起笔来就犯难了。知道“是这样,就是讲不出“为什么。根本原因还是无“米下“锅。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论