一次函数与特殊平行四边形专题_第1页
一次函数与特殊平行四边形专题_第2页
一次函数与特殊平行四边形专题_第3页
一次函数与特殊平行四边形专题_第4页
一次函数与特殊平行四边形专题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一次函数与特殊平行四边形专题1、如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3)点C的坐标为(0,m),其中m2,过点C作CEAB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作DEFA(1)图中AB= ;BE= (用m的代数式表示)(2)若DEFA为矩形,求m的值;(3)是否存在m的值,使得DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由2、在平面直角坐标系中,一张矩形纸片OBCD按图1所示放置,已知OB=10,BC=6,将这张纸片折叠,使点O落在边CD上,记作点A,折痕与边OD(含端点)交于点E,与边OB(含端

2、点)或其延长线交于点F请回答:(1)如图1,若点E的坐标为(0,4),求点A的坐标;(2)将矩形沿直线y=- 1 x/2+n折叠,求点A的坐标;(3)将矩形沿直线y=kx+n折叠,点F在边OB上(含端点),直接写出k的取值范围3、如图,在平面直角坐标系中,直线y=- 3 x/4+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形(1)填空:b= ;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标4、如图,将矩形OABC放置

3、在平面直角坐标系中,点D在边0C上,点E在边OA上,把矩形沿直线DE翻折,使点O落在边AB上的点F处,且AF/AE=4/3若线段OA=8,又2AB=30A请解答下列问题: (1)求点B、F的坐标: (2)求直线ED的解析式: (3)在直线ED、FD上是否存在点M、N,使以点C、D、M、N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由4、如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动。以CP,CO为邻边构造PCOD,在线段O

4、P延长线上取点E,使PE=AO,设点P运动的时间为秒.(1)当点C运动到线段OB的中点时,求的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=1,过点F作MNPE,截取FM=2,FN=1,且点M,N分别在第一、四象限,在运动过程中,设PCOD的面积为S.当点M,N中,有一点落在四边形ADEC的边上时,求出所有满足条件的的值;若点M,N中恰好只有一个点落在四边形ADEC内部(不包括边界)时,直接写出S的取值范围.5、如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点,点A的坐标为(1,0)ABO=30°,过点B的直

5、线y= 33x+m与x轴交于点C(1)求直线l的解析式及点C的坐标(2)点D在x轴上从点C向点A以每秒1个单位长的速度运动(0t4),过点D分别作DEAB,DFBC,交BC、AB于点E、F,连接EF,点G为EF的中点判断四边形DEBF的形状并证明;求出t为何值时线段DG的长最短(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,说明理由6、如图,在平面直角坐标系中,已知RtAOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA=8、OB=6,ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y

6、轴于点E(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由7、如图,四边形OABC是矩形,点A、C在坐标轴上,ODE是OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC=2,OC=4(1)求直线BD的解析式;(2)求OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由8、在直角坐标系中,直线y=2x+

7、4交x轴于A,交y轴于D(1)以A为直角顶点作等腰直角AMD,直接写出点M的坐标为 。(2)以AD为边作正方形ABCD,连BD,P是线段BD上(不与B、D重合)的一点,在BD上截取PG= 10,过G作GFBD,交BC于F,连AP则AP与PF有怎样的数量关系和位置关系?并证明你的结论;(3)在(2)中的正方形中,若PAG=45°,试判断线段PD、PG、BG之间有何关系,并证明你的结论9、如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度(0°90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC

8、于点P,连AP、AG(1)求证:AOGADG;(2)求PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当1=2时,一次函数y=kx+b经过点P、E,求它的解析式10、OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6(1)如图,在AB上取一点M,使得CBM沿CM翻折后,点B落在x轴上,记作B点求B点的坐标;(2)求折痕CM所在直线的解析式11、如图,已知四边形ABCD为矩形,O为坐标原点,点A的坐标为(0,6),点C的坐标为(8,0),点P是线段BC上一动点,已知点D是直线AE上位于第一象限的任意一点,直线AE与x轴

9、交于点E(-3,0);(1)求直线AE的关系式;(2)连接PD,当AD=AP、DAP=90°时,求直线DP的函数关系式;(3)若将直线AD向右科移6个单位后,在该直线上是否存在一点D,使APD成为等腰直角三角形?若存在,请直接写出点D的坐标,若不存在,请说明理由12、如图,在平面直角坐标系中,矩形ABCD的顶点A、B、C的坐标分别为(0,5)、(0,2)、(4,2),直线l的解析式为y=kx+5-4k(k0)(1)当直线l经过点B时,求一次函数的解析式;(2)通过计算说明:不论k为何值,直线l总经过点D;(3)直线l与y轴交于点M,点N是线段DM上的一点,且NBD为等腰三角形,试探究

10、:当函数y=kx+5-4k为正比例函数时,点N的个数有 个;点M在不同位置时,k的取值会相应变化,点N的个数情况可能会改变,请直接写出点N所有不同的个数情况以及相应的k的取值范围13、如图,正方形OABC的顶点O在坐标原点,且OA边和AB边所在直线的解析式分别为y= 34x和y=- 43x+253(1)求正方形OABC的边长;(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线AOC向终点C运动,速度为每秒k个单位,设运动时间为2秒当k为何值时,将CPQ沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形?14、如图,将一个正方形纸片OAB

11、C放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与 对角线AC交于Q点(1)若点P的坐标为(1,14),求点M的坐标;(2)若点P的坐标为(1,t)求点M的坐标(用含t的式子表示)(直接写出答案)求点Q的坐标(用含t的式子表示)(直接写出答案)(3)当点P在边AB上移动时,QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小并说明理由;如果你认为发生变化,也说明理由15、如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上

12、的G处,E,F分别在BC,AB边上且F(1,4)(1)求G点坐标;(2)求直线EF解析式;(3)点N在坐标轴上,直线EF上是否存在点M,使以M,N,F,G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,说明理由16、如图,在平面直角坐标系中,O为坐标原点,直线y=-x+4与x轴交于点A,与y轴交于点B,点C在x轴负半轴上,SABC=28点P是线段CA上一动点(1)求直线CB的解析式;(2)H是直线BC上一点,在平面内是否存在一点R,使以点O,B,H,R为顶点的四边形是菱形?若存在,直接写出点R的坐标;若不存在,请说明理由17、在平面直角坐标系xOy中,边长为6的正方形OABC的

13、顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上(1)如图1,当CG=OD时,直接写出点D和点G的坐标,并求直线DG的函数表达式;(2)如图2,连接BF,设CG=a,FBG的面积为S求S与a的函数关系式;判断S的值能否等于等于1?若能,求此时m的值,若不能,请说明理由;(3)如图3,连接GE,当GD平分CGE时,m的值为 18、如图,在平面直角坐标系中,直线l1:y 12x+6分别与x轴、y轴交于点B、C,且与直线l2:y12x交于点A(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由19、如图,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC(1)求点A、C的坐标;(2)将ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图);(3)在坐标平面内,是否存在点P(除点B外),使得APC与ABC全等?若存在,请求出所有符合条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论