版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、正、xx和差化积公式指部分的一组sin%+sinB=2sin(%+B-)/2)/2,cos(%sin-sinB=2cos(%+B)/2B)/2Sin(%cos%+cosB=2cos(%+B)/2)/2cos(%cos-cos-2sin(%+B)/2-BS/n(【注意右式前的负号】以上四组公式可以由公式推导得到证明过程sin%+sin3=2sin(%+小)?2)/2勺证腮过程因为sin(%+B)=sin%cosB+cos%sin(37 / 7sin(-0)=sinDCcoos苗sinB将以上两式的左右两边分别相加,得sin(%+B)+sin()=2sin%cosB设a+3=0a-3=(|)那么%
2、=(0+0)/2,(&阶/2把“B的值代入,即得sin0+sin6=2sin(8+6)/2明s(0正切的和差化积tan%士tanB=sin(*±B)/(cos证明)cosB)cot%±cotB=sin(B±)/(sin-sin(3)tan%+cotB=coS()/(cos%sinB)tan-cotB-cos(%+B)/(cos风.sinB)证明:左边=tan%±tanB=sin%/cos%±sin(3/cosB=(sin%-cosB±cos%,sinB)/(cosa,cos(3)=sin(%±B)/(cos右边cos
3、B)=等式成立注意事项在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用化为同名;若是高次函数,必须用降为一次口诀正加正,正在前,余加余,余并肩正减正,余在前,余减余,负正弦反之亦然生动的口诀:(和差化积)帅+帅=帅哥帅-帅二哥帅咕+咕=咕咕哥-哥二负嫂嫂反之亦然记忆方法和差化积公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了各自的简单记忆方法。结果乘以2这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是-1,1,其积的值域也应该是-1,1,而和差的值域却是-2,2,因此乘以2是必须的。也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相
4、同而造成有系数2,如:cos(或-cos(%+B)=(cos%cosB+sin-(csin破Cosin%sinB)=2sin%sinB故最后需要乘2。只有同名三角函数能和差化积无论是正弦函数还是余弦函数,都只有同名三角函数的和差能够化为乘积。这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。乘积项中的角要除以2在和差化积公式的证明中,必须先把口和(3表示成两角和差的形式,才能够展开。熟知要使两个角的和、差分别等于口和就这两个角应该是(%+8)/2(优8)/2也就是乘积项中角的形式。注意和差化积和积化和差的公
5、式中都有一个除以2",但位置不同;而只有和差化积公式中有乘以2”。使用哪两种三角函数的积这一点较好的记忆方法是拆分成两点,一是是否同名乘积,二是半差角”(-移)/2的三角函数名。是否同名乘积,仍然要根据证明记忆。注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。所以,余弦的和差化作同名三角函数的乘积;正弦的和差化作异名三角函数的乘积。(阮(3)/2的三角函数名规律为:和化为积时,以cos(-破)/2的形式出现;反之,以sin(-磁)/2的形式出现。由函数的奇偶性记忆这一点是最便捷的。如果要使和化为积,那么口和(3调换位置对结果没有影响,
6、也就是若把(阮(3)/2替换为(-%)/2结果应当是一样的,从而(优(3)/2的形式是cos()/2另一种情况可以类似说明。余弦-余弦差公式中的顺序相反/负号这是一个特殊情况,完全可以死记下来。当然,也有其他方法可以帮助这种情况的判定,如(0,附余弦函数的单调性。因为这个区间内余弦函数是单调减的,所以当口大于(3时,cos%小于cos8但是这时对应的(+B)/2(-B)/2(0,的范围内,其正弦的乘积应大于0,所以要么反过来把cos瞅到cos痢面,要么就在式子的最前面加上负号。积化和差公式sin%sinp=(-os-cos(%+B)W注意:此时差的余弦在和的余弦前面)或写作:sin%sin-c
7、os(%+6。凤包8)/2(注意:此时公式前有负号)cos%cosB=cos()+cos(%+B)/2sin%cosB=sin(%+徉)/2n(%cos%sinB=sin(-sin(+脩/2证明积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。即只需要把等式右边用两角和差公式拆开就能证明:sin%sin-1/2-2sin%sin3=-1/2(cos%cosnp%sin-(cjOS%cosB+sin%sin(3)=-1/2cos(%-cos(或)其他的3个式子也是相同的证明方法。(参见)作用积化和差公式可以将两个三角函数值的积化为另两个三角函数值的和乘以常数的形式,所以使用积化和差公式可以
8、达到降次的效果。在历史上,出现之前,积化和差公式被用来将乘除运算化为加减运算,运算需要利用三角函数表。运算过程:将两个数通过乘、除10的方哥化为0到1之间的数,通过查表求出对应的反三角函数值,即将原式化为10Ak*sin%sin郸形式,套用积化和差后再次查表求三角函数的值,并最后利用加减算出结果。对数出现后,积化和差公式的这个作用由更加便捷的对数取代。记忆方法积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了各自的简单记忆方法。结果除以2这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是-1,1,其和差的值域应该是-2,2,而积的值域确是-1,1,因此除以2
9、是必须的。也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:cos(或-cos(%+B)=(cos%cosB+sin-(con移Co-sin%sinB)=2sin%sin3故最后需要除2。使用同名三角函数的和差无论乘积项中的三角函数是否同名,化为和差形式时,都应是同名三角函数的和差。这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。使用哪种三角函数的和差仍然要根据证明记忆。注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。所以
10、反过来,同名三角函数的乘积,化作余弦的和差;异名三角函数的乘积,化作正弦的和差。是和还是差?这是积化和差公式的使用中最容易出错的一项。规律为:小角”以cos(3的形式出现时,乘积化为和;反之,则乘积化为差。由函数的奇偶性记忆这一点是最便捷的。如果(3的形式是cos&那么若把B替换为-&结果应当是一样的,也就是含+和-B的两项调换位置对结果没有影响,从而结果的形式应当是和;另一种情况可以类似说明。正弦-正弦积公式中的顺序相反/负号这是一个特殊情况,完全可以死记下来。当然,也有其他方法可以帮助这种情况的判定,如0,附余弦函数的单调性。因为这个区间内余弦函数是单调减的,所以cos(%+不大于cos(包但是这时对应的口和(3在0,题范围内,其正弦的乘积应大于等于0,所以要么反过来把cos(醺B放到cos(%+前面,要么就在式子的最前面加上负号。万能公式【词语】:万能公式【释义】:应用公式sin%=2tan(%/2)/1+tan(%/2)八2cos%=-1an(%/2)八2/1+tan(0c/2)A2tan%=2tan(%/2刑以%/2)八2将sin风cos外tan%代换成tan(%/2的式子,这种代换称为万能置换。【推导】:(字符版)sin%=2sin(%/2)cos(%/2)=2sin(%/2)cos(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度房地产项目资金代管代收代付服务合同
- 2025年度离婚夫妻共同子女法律权益保护协议
- 施工总体筹划
- 施工日志填写样本施工过程中的质量问题与整改记录
- 打造高效、智能的办公环境-基于工业互联网平台的实践研究
- 深度探讨学术研究汇报的要点与制作技巧
- 业绩达标股票期权合同范本
- 产品分销合作合同书
- 万科地产集团:合同管理新篇章
- 二手房交易合同样本
- 2024年海南省公务员录用考试《行测》真题卷及答案解析
- 2025年中国汽车车灯行业市场现状、前景分析研究报告(智研咨询发布)
- 2024夏季广东广州期货交易所招聘高频难、易错点500题模拟试题附带答案详解
- 浙江省2024年高考化学模拟试题(含答案)2
- 2024新人教七年级英语上册 Unit 2 Were Family!(大单元教学设计)
- (部编版)统编版小学语文教材目录(一至六年级上册下册齐全)
- 材料力学之材料疲劳分析算法:S-N曲线法:疲劳分析案例研究与项目实践.Tex.header
- 2024(新高考2卷)英语试题详解解析 课件
- 天津2024年天津市规划和自然资源局所属事业单位招聘笔试历年典型考题及考点附答案解析
- 中国医美行业2024年度洞悉报告-德勤x艾尔建-202406
- 2024年江苏经贸职业技术学院单招职业适应性测试题库一套
评论
0/150
提交评论