金融计量-(G)ARCH模型在金融大数据中地的应用_第1页
金融计量-(G)ARCH模型在金融大数据中地的应用_第2页
金融计量-(G)ARCH模型在金融大数据中地的应用_第3页
金融计量-(G)ARCH模型在金融大数据中地的应用_第4页
金融计量-(G)ARCH模型在金融大数据中地的应用_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、(G)ARCH 模型在金融数据中的 应用实验目的理解自回归异方差(ARCH模型的概念及建立的必要性和适用的场合。了解(G) ARCK型的各种不同类型,如GARCH-M1型,EGARCH型和TARCH 模型。掌握对(G)ARCH真型的识别、估计及如何运用 Eviews软件在实证研究 中实现。实验步骤( 一 ) 沪深股市收益率的波动性研究1. 描述性统计(1) 数据选取与导入本实验选取中国上海证券市场 A股成分指数上证180和深圳证券市场A股成分指数深证300作为研究对象。分别从财经网站上下载了2010年 5月 4号到 2016年 4月 19号这将近6年的上证180和深证 300的每日收盘价,共

2、1448个。 其中,上证180指数的日收盘价以下记为sh,深证300指数的日收盘价以下记为sz。将下载的数据导入Eviews。(2) 生成收益率的数据列在 Eviews 的命令窗口中输入“genr rh=log(sh/sh(-1) ”,生成上证180指数的日收益率序列,记为 rh; 输入 “ genr rz=log(sz/sz(-1) ”, 生成深证300指数的日收益率序列,记为rz 。(3) 观察收益率的描述性统计量利用 Eviews 作出的沪市收益率rh 的描述性统计量如图1 所示。图1沪市收益率rh的描述性统计量从上图可以看出,样本期内,沪市收益率的均值为0.00395%,标准差为1.6

3、669%,偏度为-0.668201,左偏峰度为7.316683 ,远高于正态分布的峰度值 3, 说明沪市收益率rh具有尖峰和厚尾特征。JB统计量为1231.139,说明在极小水 平下,沪市收益率rh显著异于正态分布。利用Eviews作出的深市收益率rz的描述性统计量如图2所示。Series: RZSample 11446口加erva帅鸣1447MsanD 0001MedanD00105JMaKinmn.典3 弱2Llinirnm-0 0E66S6Sid DevD017526Skewness-0.7B100/KurtosisU.0719557JafC|L.e Bera门口白9慎Protwo ii

4、 hCi(XX)。算图2深市收益率rz的描述性统计量从上图可以看出,样本期内,深市收益率的均值为0.0128%,标准差为1.7926%,偏度为-0.781007,左偏峰度为6.079557 ,远高于正态分布的峰度值 3, 说明深市收益率rz也具有尖峰和厚尾特征。JB统计量为718.8909,说明在极小 水平下,沪市收益率rz也显著异于正态分布。而且深市收益率的标准差略大于 沪市,说明深市的波动性更大。2 .平稳性检验利用Eviews软件对rh和rz进行平稳性检验。沪市收益率rh的ADF检验结 果如图3所示;深市收益率rz的ADF佥验结果如图4所示。Null Hypatnesis: RH has

5、 a unit rootExogerlOjS: ConstantLag Length: 0 i Automatic- based on SC, maxlas=l0)t-StatisticProb *Augmented Dicke/-Fullertest statistic-37.042590.0000Test critical values:1% level5% level 10% level-3 434664-2.363333-2.567773“MacKinnon (11996) one-sided p-valuet.Augrn ente d DickeFu 11 eTe 与t E qu a

6、ti cnDependent Variable; D(RH)Mpthod- I qhM SquarssDate: 05/11fl5 Ume: 20 54Sample (adjusted): 3 144BIncluded observations 144S after adju3tnnent&VariableCoefficientStd. Error 1-StatisticProb-0 9744620 026307-37 D42590.0000C354E-D50.00043&D.080S240935gR-squared0.487244Mean dependent var&

7、.1BE=06Adjusted R-squared0.48 S889S.D. dependent var0 023279S.E. of regression0 016675Akaike info criterion-5.348441Sum squared resid0 401506Schwarz criterion5 341143Log likelihood3S60 923Hannan-Quinn criter.-5345717F-statlstic1372.154Durbin-Wats on stat1 991214Pro bF-stati stlo)0 000000图3 rh 的ADF检验

8、结果Null H/pothesis: RZ has a unit rootExogenous: ConstantLag Length: 0 (Automatic - based on SIC. msxlag=lO)t-StatisticProb*Augmented Dicke/-Fuller test statistic-55.6856900000Test critical values:1% level5% level10% level-3.434654-2.363333-2.567773*MacKinnon i1 390) one-sided p-value3.AuffrneritedDi

9、ckey-FullerTestEquatiixiDependent Variable' D(RZ)Method' Least SquaresDate: 05/11/16 Time: 20 54Sample (adjusted): 3 1448Included obseivations' 1446 after adjustmentsVariableCoefficientStd. ErrorStatisticProb.RZ(-1) C-0.9359980.0001090.0262570.000471-35.635690.2311740.00000.8172squaredAd

10、justed R-squared S.E. of regression Sum squared resid Log likelihood F-statisticPro o(.F-s1ati stic)0 43623 0 468255 0 01789g Q4fi2578 3766 555 12734690 000000Mean dependent var S.D. dependent var Akaike info criterion Schwarz crilerion Hannan-Quinn enter. Durbin-Watson stal-1.20E-05 0 024545 -52068

11、53 -5 J 99555 -5.204129 1.9&7091图4 rz 的ADF检验结果从这两个ADF检验结果可以看出,rh和rz的ADF检验值都小于临界值,说 明沪市收益率和深市收益率都是平稳的。3 .均值方程的确定及残差序列自相关检验通过对收益率的自相关检验,可以发现沪市的收益率与其滞后 7阶存在显著 的自相关,而深市的收益率也与其滞后7阶存在显著的自相关,因此建立的均值 方程如下:(1) 对收益率做自回归利用LS普通最小二乘法对rh和rh(-7)做回归,回归结果如图5所示Dependentsanab回 RHMethod: Least SquaresDate: 05/14; 1

12、S Time: 1734Sample fadjusted): 9 144SIncluded obseR'atiQns: 140 after adjustmentsvariableCoerriaentStd. Error t-StatisticProb.C6.72E-050.。438 Q 1535290 3730RH(-7)0.0476700,0262351 324055Q.0C33R-squared0.0Q231QMean deperdent varb85E4J5Adjusted R-sqijarfld0.001616S Dvar0.016631S.E of regression0.0

13、1661BAra ike info criterion-5.355294Sum squar&d resid0.397107Schwarz criterion-5.347971Log likelihood385A812Hannan-Quinn criter.-5.352560Fstatistic3 329370Durbin-Wats on stat1.945953ProbiF'Statistic0 0632&0图5收益率rh的回归结果忽略常数项的不显著,rh的均值方程估计为再又t rz和rz(-7)做回归,回归结果如图6所示。Dependent'ariable:

14、RZMethod: Least SquaresDate; 05/14/16 Time: 17:37Sample (adjusted): 9 144BIncluded observations: 1440 after adjustmentsVariableCoefficientSt! Error t-StatisticProbCQ.00C1590.0004710 3380320.7349RZ(-7)0.0610250.0262362 3259630.0202R-squared0.003746Mean aepenaemvarQ.D00167Adjusted R-squared0.003Q55S D

15、. dependentvar0.017695S.E. of regressionQ.0T7B&7Akaike info criterion-&210315Sum squared residC45&Q61Schwarz criterion5.202993Log likelihood3753427Haman-Quinn enter巧.2075吃F-slatistic541C1D2Durbin-Watson stat1.875428Pro b(F-statistic0.020159图6收益率rz的回归结果同样忽略常数项的不显著,rz的均值方程估计为(2) 用Ljung-Box

16、 Q统计量对均值方程拟合后的残差及残差平方做自相关检验得到rh残差的自相关系数acf和pacf值,如图7所示Date: 0£/14yiS Time: 17:42Sample 9 1440Included observations: 1440Autocorrelation Partial Correlation AC PAC Q-Stat Prob11 0 027 0 027 1.0430 0 3061112 4037 -0.038 3.0003 02231II1II3 -0.0Q3 刃 006 3 0837 537911n4 0 077 0,075 11416 002211115 0

17、.015 0.010 11,739 0039口II口II6 -0.094 -0 090 24 539 0.0001II1II7 -0.004 0.003 24 615 00011111R 0 053 0 048 23 503 DOQfl11)19 0.037 0,030 31443 000011110 -0.Q25 -0.011 32342 0.0001|11 0.043 0.Q37 35000 0 000111112 0.021 0.007 35 625 0 0001113 0.Q7J 0,062 42.776 0 00011114 ,079 -0.073 51 344 QUO。111115

18、 0.004 0.023 51 894 0 0M图7 rh 残差的自相关系数 acf和pacf值偏自相关系数显示rh残差不存在显著的自相关。再得到rh残差平方的自相关系数acf和pacf值,如图8所示Date:Time: 1744Sample: 9 indue白0 observations: 1441?Au 忸 5rr 之的Panial Carrelatidi AC PAC Q-Stat ProbI11o.ieo0 ISO46.33S0000I1_l20 23/U 212128u.ouoIn130.2130 152193.620000In114a0 007242400.000I1150 15C

19、0 051275 170000In11600 023297.270000Ii1170 1交0.046323 520.000I1180.100 019339 170.0001iI100or0 01035i 25o.coo1i11100 12E0 060374 930.0001i11110.09-GO1B306.36o.coo1j11120 0920 017399 140.00011:130 1790 119445740.00011114o ooe0.011455 000.0001j1II150.084-0.015469.33,000图8 rh 残差平方的自相关系数 acf和pacf值偏自相关系数

20、显示rh残差平方存在显著的自相关。再做出rz残差和rz残差平方的自相关系数图,如图 9和图10所示Date: 05/5 Time: 1746Sample: 9 1446Included1440Autocorrelation Pallai Correlation AC PAC Q-Stat Prob111O.OB20.062559610.01 fl12-0.041-0.0457 99550.01Sf30.0150.0218.33470.040J40.0290.0259.53770.04950 0160.015g S3120 077II116-0.042-0.04312.5140.051117-0

21、.0040.00212.5410.0 S4111Q0.0440.0401S.3290.05311g0.0120.00715.5490.07711110-0.064-0.06121,5650.017111111D.OOSo.oi g21.bd80.027111112-0.002-0.01321 &S50.041u1130.0700.07328.8470.0071114-0.047-0.05232.0030.004I111150.0070.02332.0630.006图9 rz残差的自相关系数acf和pacf值Date: 05/14/16 Time: 17:47Sample: 9 144B

22、Included cbservations: 1440AC PAC ChSlat Prob I I n 1I- I- I 1 1 I- I- 1 I _1 iBl T0 2070.20761.E320.0000 2720.240168760,0000 2380.162260 870,0000 2090 101313g80,0000 2000.082372070.0000 1333.002397 51O.O'QO0 1213.00041388O.O'OO0 1473.053把口 3。O.O'OO0 1250.03747338O.O'QO0.17fiQ.094518

23、36O.O'OO0.146D.054550 170.0000.103&.01G565.570.0000.207D.10E62772O.O'OO0.190D.090680440.00。0.119-3.02270095O.O'OOO1Z1 Ji 1131415Autocorrelation Partial Correlation图10 rz 残差平方的自相关系数 acf和pacf值从图中可以得到与rh类似的结论,即rz的残差不存在显著的自相关,而残 差平方存在显著的自相关。(3) 对残差平方做线性图对rh进行回归后提取残差,生成残差平方序列 resl ;对rz进行回

24、归后提 取残差,生成残差平方序列res2。利用软件作出resl和res2的线形图,如图11 和图12所示。RIES2.m-i250WC7501000125。图12 rz 残差平方线性图由这两个图可以看出,e t2的波动具有明显的时间可变性和集簇性,比如在 500和1000附近比较小,也就是说适合用 GARCH模型来建模。(4) 对残差进行ARCH-LM Test对rh做回归之后的窗口中进行 ARCH-LMTest,选择一阶滞后,得到检验结 果如图13所示。同样步骤得到rz的检验结果,如图14所示。Heteroskeda Elicit/ Test .ARCHF-statistic4S.32412

25、 Prob F(1J437)0 0000Obs*R-squared46.81700 Prob. Chi-Square(1)0.0000Test Equation:Dependem '. anaDie: Kh3iup-2Method: Least SquaresDate: 05/15/1S Time: 09:42Sample fsdjusted): 1& 1443Included ctseR'atons' 1439 afler adjustmentsVariableCoefficient SW. Error t-Statistic Pncb.C0 0002261

26、94E-0511 652620.0000RESIh2(FQ1B03770 0259435 951555。0 0。F?-sqgrM0.8253dMean d叩日ndgnt var0.000276AtijJStedR-squared0 031B61SD dependentvar0.000695SE of regression0.000684Akaike info criterioin-11.73512Sum squared resid0.000673 Schwarz criterion-11 72730Log livelihood3445422Hannan-Quinn criter-11r7323

27、9F-statistic姐32412DurUrbWatson stat2.065934Prob(F-st3t»stic)O.OQOOOO图 13 rh ARCH-LM TestHeteroskedast city Test: ARCHF-statistic6413170 Prqb. F1r1437)0 0000Obs-squared6147729 Prob. Oi-Square(l)0 0000TestEquatian:Dependentk anaDle: RE3IL '2Metliod- Least SquaresOatK 05/15/16 Time: 09:43Sampl

28、e factjuseti/ 10 1443Included obs日zati口ns: 1439 after adjustmentsVariabisCoeiicierrt Std. Error t-Statistic Prob.C0.0302532 04E 0512.427040.0000RESILZ2I-1)0 2366940 02f8108 008 22 70.0000R-squared0.042722Mean impendent var0.000319Adjusted R-squared0.0420568.D dependentvar0.000722S.E ofreqres&on0

29、,030707 Akaike mfo criterion11 67097Sum squared resid0,0JD717Sctiwaiz criterion-1166364Log likelihood33阻259Hannan-Quinn criter-1166823F-statistic04.1317QDurbinWatson sUt2,0S0575Prob(F-statistic)O.OJOQOO图 14 rz ARCH-LM TestARCH-LMTest检验的原假设是残差中一直到第 q阶都没有ARCH®象。在这 里q=1.由检验结果可以看出,rh的F检验统计量和LM检验统计量

30、都大于临界值, 因此拒绝原假设,认为rh残差中,ARCHC应是显著的。对于rz来说也是这样, rz残差中的ARCHS应也显著。4. GARC凄模型建模(1) GARCH(1,1膜型估计结果对rh和rz分别进行GARCH(1,1建模。其均值方程形式为其中r表示rh和rz都可以。其条件方差方程为利用软件对rh进行估计,估计结果如图15所示Dependent anable: RHMethod: HL - ARCIH (Marcuardt: - Narrr al distributionDate: 05/15/1B Time: 0959Sample (adjusted): 9 144Sincluded

31、 observatons: 1440 after adjustm&ntsConvergenca achieved arer 10 iterationsPresample an a nee: baclccast parameter = 0.7)GARCH = Ci:3) + C(4fRESlD-1 /2 + C(5)*GARGH11)VariableCo efficientStd. Errorz-StatisticProbC9.57E-0500003760 2554530.7984RH-7)0.0559120.0256002.1772580.0295Variance EquationC3

32、.45E-05B.54E-Q74 0345070.0001RESICMV20.0530780.0067957 8114190.0000GAR CHg)0.9331&20.007601122.77630.0000squared0.002242Mean deperxlent var6 36E-05Adjusted R-squared0.001548S . dependent var0.01S631& E. of regression0.016616Akaike info criterion5.547177Sum squared re&id口397134Schwarz ent

33、erien-5.523870Log likelihood3998.S&8Hannan-Quinn criter5 540343Duroin-Watson stat1 945433图15 rh 的GARCH(1 1)模型估计结果由估计结果可以看出,估计的模型为止匕外,除常数项外其他各系数全部显著,说明 rh序列具有显著的波动集簇 性。而且ARCH®和GARCHH系数之和为0.986,小于1,也符合理论。因此对 rh建立的GARCH0 1)模型是平稳的,具条件方差表现出均值回复,即过去的波 动对未来的影响是逐渐衰减的。再又t rz进行建模,估计结果如图16所示Dependent

34、. anable R2Method: ML - ARCH (Marquardt; - Normal distributionDate: 05715/16 Tine: 10:07Sample (adjustedj: 9 1448included otserv'ations: 1440 after adjustmentsConvergence achieved after 15 iterationsPresample xwrinnc。: backcast paramstar - 0.7) GARCH = 03) + C(4)*RESID(-1 Y2 + C(5 尸 GARCH(-1)Var

35、iableCo efficientStd. Error-StatisticProbC0 0002060.0003940 5213740.6018RZ0,0675310 02691125094500.0121Variance EquationC3.20E-0e9.05E-073,5395100.0004RESIW0.0437090.0063917.068637。口。00GARCHf-1)0.9397470.007006134 13220.0000R-sqtiare<J0.003099Mean dependent war0.000107Adjusted R-squared0.003006SD

36、 dependent0017795S E of regression0.017656AKaike info criterion-5.414273Sum squaredssi。0.459034Schwarz criterion-5.395966Leg likelihood3903.277Hannan-Quinn enter-5.407439Durbin-Watson stat1.375473图16 rz 的GARCH(1 1)模型估计结果估计的模型为对rz的GARCHC1 1)模型的估计结果分析与rh类似,除常数项外其他各系 数全部显著,说明rz序列具有显著的波动集簇性。而且ARCHED GAR

37、CH?系数 之和为0.988,小于1,也符合理论。因此对rz建立的GARCH0 1)模型是平稳 的,具条件方差表现出均值回复,即过去的波动对未来的影响是逐渐衰减的。(2) GARCH-M(1,1)古计结果对rh进行GARCH-M(1,1模型估计,在ARCH-MK中选择方差,得到rh的 GARCH-M(1,1模型估计结果如图17所示。Dependent Variable: RHMethQtr ML - ARCH (Llarquarcif: - Normal distributionDate; 05/15/16 Time 10:13Sample (adjusted): 9 1446Included

38、 observations' 1440 after adjustmentsConvergence achieved after24 iterationsPresample variance backcast (parameter - 0.7)GARCH =C(5)*RE 引口11/2 +C(G*GARCH1)VariableCoefficientStd. Errorz-StatisticProbGARCH0.1965203.07135800S39740.9490C5.53E-050.0007120.077570,938。RH(-7)0D559630.02568321789700.029

39、3Variance EquationC345E'O69.53E-C74 0202610.0001RESID(-ir20.0531140.00684 57.7587450.0000GARCH(-1)0 93311ED.007&05122.70090.0000R-squared0 002154Mean dependent var6 86E-05Adjusted R-squared0 000765S.D. dependentvar0.016631S E of regressionD.0'16625Akaike info criterion-5545791Sum squar&a

40、mp;d resid0 3971B9Schwarz criieriork-5523623Log likelihood3998970Hannan*Quinn enter.-5537591Durbin-Watson stat1 945021图17 rh 的GARCH-M(1,1)模型估计结果rh并由估计结果可以看出,均值方程中的 GARC项的系数并不显著,说明 不适合用GARCH-M1型来进行估计。同样步骤得到rz的GARCH-M(1,1模型估计结果,如图18所示De pendent'/alable: RZMethod: ML - ACH (Marquard; - Normal distr

41、ibutionDate: 05/15/16 Time: 10:17Sample (adjusted): 9 1448Included obse-vatians. 1440 artei adjustmentsCon mergence achieved after 2S iterationsPresample variance: backcast (parameter = 0 7)GARCH = C(4: + C(5)*RESIDt-1f2 + C(&rGARCHf-1)VarigbeCoefficientStd. Errorz-StatisticProb,GARCH1,47 292728

42、78J4Q口.5117280 5033C-0,0001300.000752-0173f070,8际R在乃0.0632360.02687425409460.0111Variance EquationC3.25E-069.64E-073 3752820.0007RESIDfra0,04 »2230.001255.908799。口。QQGARCHi-1)0.93903dO.OOT123131 7540.0000R-squaredi0,002493Mean cependentvar0.000167Adjusted R-sqjared0.001105SD dependentvar0.01739

43、5S E. of regression0.017695Akaike info criterion-5.413035Sum squared residQ.45964QSch 即 3Pz criterion-5.391117Log likelihood3903.421Hannan-Quinn crit&r-5.404835Durbin-Wats on stat1.97 1 20Qrz的GARCH-M(1,1模型估计结果与rh类似,即均值方程中的GARC项的系 数并不显著,说明rz不适合用GARCH-彼型来进行估计。(二)股市收益波动非对称性的研究1. TARCH1型估计结果在Thresho

44、ld order中填入1,得到rh的TARCH(1 1)模型估计结果如图19Variable: RHMethod ML- W?CH (MarguardO - Mcrmai distributionDats 05/15J16 rime 10:23Sample laiimsted) 9 144gIncluded observations: U40 alter adjstmentsCsneroerce acnie(/ed after 15 iterationsPie&aiTDle variance: tacxusttparameter = 0.7)GARCH = Cf3)* C(4rRESI

45、O(-1 Y2 + C5FRESIDM-CfE)*GARCH(-nVariabeCoefficientSt。 Errori-StatisticProb.C9 6OE-Q500003632505815),3321RH-7)0.05688900255952.174362。颊Variance Equationc3 44E-063 53E-074.033967o oaoiRESIDZF20.053183100838g5.3395600.0000RESD(-1)'2RESn(-1)<0:)-0.0002730.009160-D.029764Q.97S3GARCH-10.9332330.00

46、7599122.SJ6S0.0000R-squaied0.002242Mean d&pendent var6.86E-05Adjusted R-squared0.001543S.D. dependent/ar3.01&531SE. of regjessicciO.01GS1BAkaike info crteror5545789SumsquaFed resid0.397134Schwarz ofterf on-5 E23320Log ikelihood3998 96BHannan-Quinn enter.5.537538Djrhn-pVstson stal1.945434图19

47、rh 的TARCH(1, 1)模型估计结果估计结果显示,RESID(-1)A2*(RESID(-1)<0)的系数估计值小于0,并且不 显著,说明在沪市中并不存在收益波动的非对称性。同样步骤得到rz的TARCH(1 1)模型估计结果如图20所示。Deoendent Variable: RZMethod, ML - ARCH (Uarqjarlt) - Norma distributionDale. 05/15/lfi Time 1020Sample (adjuftecn: 9144fiIndLJded osservstons: 1440 after a<liustTientsConv

48、erger ce adiievei after "6 iterationsPrfisample variant: Dackcastparameter = 0.7iGARCH _ 7(& + C(4yRE3ID+ C(E )*RE3ID-ir2J(RESID(-1 )*0)C(6)*CARCH(-1)VariableCoefficien:Std. Emz-S:atisticPrat).C0 35E 0 =0.0004090.2342D40 8382RZl-7)0 0722810 0263A327386650.0062Variance Equationc433E-CE1.06 4

49、064 1357&00,Q0D0RE.SIDf-120035025O.COB70140254720.0001RESIDM)l2T(RESID(-1)<0)0.0285400.4109232 6129*20.0090GaRCH(-1)£336600.0077341如71超0.0000R-SQuarea0003603叱口 rtependent var0 000167Adjust&d R'Squar?d0.00291 CS D dependentvar0.017695S.E. ofregession0.01786EAkaike info critelon-5.

50、415270Sum squa 印 resid045912E'53&3302Log likslihood30D4.0QEHannan Quinn critor.5 407060Durbin-Watson stat1875496图20 rz 的TARCH(1, 1)模型估计结果估计结果显示,RESID(-1)A2*(RESID(-1)<0)的系数估计值大于0,并且显 著,说明在深市中存在收益波动的非对称性,即坏消息引起的波动比同等大小的好消息引起的波动要大。2. EGARCH型估计结果对rh进行EGARCH(1 1)估计,其估计结果如图21所示。Dependentanable

51、: RHMethod: LIL - .ACH (Marquardt: - Normal distributionDate: 05/15/1 a Time 10:29Sample fadus:ed;: 9 1448Incl jded observations: 1440 altor adjustmentsConvergence schieved after 17 iterationsPre sample va nance: ba ckcast (param eter = 07)LOG(GARCH) = C(3) + CH)*AESfRESID(-iySQRT(GARCHf-1)n +C(5)*R

52、ESID(-1 咆 SQ RT(GARCH(-1» + C(6rL0G(GARCH(-1)VariableCoeUcientStd. ErrorStatisticPnobC9.3BE-050,000377024674。0 3036RH(-7Qg5P50.02491120675630 0337Variance EquationC-0.1997730.Q3C940-& 4563030 000054)0.1276400.0138209 2359540.0000C(5)-0.0370120.007402-0 947290.3435C(6)0.9373420.003301299 05920.0000R-squared0.002294

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论