高考数学(理数)一轮复习练习题:9.3《变量的相关性与统计案例》(学生版)_第1页
高考数学(理数)一轮复习练习题:9.3《变量的相关性与统计案例》(学生版)_第2页
高考数学(理数)一轮复习练习题:9.3《变量的相关性与统计案例》(学生版)_第3页
高考数学(理数)一轮复习练习题:9.3《变量的相关性与统计案例》(学生版)_第4页
高考数学(理数)一轮复习练习题:9.3《变量的相关性与统计案例》(学生版)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第3节变量的相关性与统计案例【选题明细表】知识点、方法题号变量的相关性1,3回归分析4,6,8,12,13独立性检验2,5,7,11,14综合应用9,10基础巩固(时间:30分钟)1.对变量x,y有观测数据(xi,yi)(i=1,2,10),得散点图(1);对变量u,v有观测数据(ui,vi)(i=1,2,10),得散点图(2).由这两个散点图可以判断()(A)变量x与y正相关,u与v正相关(B)变量x与y正相关,u与v负相关(C)变量x与y负相关,u与v正相关(D)变量x与y负相关,u与v负相关2.假设有两个分类变量X和Y的22列联表为YXy1y2总计x1a10a+10x2c30c+30总计

2、6040100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组为()(A)a=45,c=15(B)a=40,c=20 (C)a=35,c=25(D)a=30,c=303.如表是我国某城市在2018年1月份至10月份各月最低温与最高温()的数据一览表.月份12345678910最高温59911172427303121最低温-12-31-271719232510已知该城市的各月最低温与最高温具有相关关系,根据该一览表,则下列结论错误的是()(A)最低温与最高温为正相关(B)每月最高温与最低温的平均值在前8个月逐月增加(C)月温差(最高温减最低温)的最大值出现在1月(D)1月至4月的月温差(

3、最高温减最低温)相对于7月至10月,波动性更大4.某公司某件产品的定价x与销量y之间的数据统计表如下,根据数据,用最小二乘法得出y与x的线性回归直线方程为=6.5x+17.5,则表格中n的值应为()x24568y3040n5070(A)45(B)50(C)55(D)605.“真人秀”热潮在我国愈演愈烈,为了了解学生是否喜欢某“真人秀”节目,在某中学随机调查了110名学生,得到如下列联表:男女总计喜欢402060不喜欢203050总计6050110由K2=算得K2=7.8.附表:P(K2k)0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是()(A)在犯错

4、误的概率不超过0.1%的前提下,认为“喜欢该节目与性别有关”(B)在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别无关”(C)有99%以上的把握认为“喜欢该节目与性别有关”(D)有99%以上的把握认为“喜欢该节目与性别无关”6.已知变量x与变量y之间具有相关关系,并测得如下一组数据:x651012y6532则变量x与y之间的线性回归直线方程可能为()(A)=0.7x-2.3 (B)=-0.7x+10.3(C)=-10.3x+0.7(D)=10.3x-0.77.为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到22列联表如下:理科文科总计男131023女720

5、27总计203050已知P(K23.841)0.05,P(K25.024)0.025.根据表中数据,得到K2=4.844,则认为选修文理科与性别有关系出错的可能性约为.8.已知下列表格所示的数据的回归直线方程为=3.8x+,则的值为 .x23456y251254257262266能力提升(时间:15分钟)9.某研究机构在对具有线性相关的两个变量x和y进行统计分析时,得到如下数据:x4681012y12356由表中数据求得y关于x的回归方程为=0.65x+,则在这些样本点中任取一点,该点落在回归直线下方的概率为()(A)(B)(C)(D)10.已知下列命题:在线性回归模型中,R2表示解释变量x对

6、于预报变量y的贡献率,R2越接近于1,表示回归效果越好;两个变量相关性越强,则相关系数的绝对值就越接近于1;在线性回归方程=-0.5x+2中,当解释变量x每增加一个单位时,预报变量平均减少0.5个单位;对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.其中正确命题的序号是.11.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下联表:感染未感染总计服用104050未服用203050总计3070100参考公式:K2=P(K2k0)0.150.100.050.025k

7、02.0722.7063.8415.024P(K2k0)0.0100.0050.001k06.6357.87910.828参照附表,在犯错误的概率最多不超过(填百分比)的前提下,可认为“该种疫苗对预防埃博拉病毒感染有效果”.12.已知某种商品的广告费支出x(单位:万元)与销售额y(单位:万元)之间有如下对应数据:x24568y3040506070根据上表可得回归方程=x+,其中=7,据此估计,当投入10万元广告费时,销售额为万元.13.合成纤维抽丝工段第一导丝盘速度y对丝的质量很重要,今发现它与电流的周波x有关系,由生产记录得到10对数据,并对数据作了初步处理,得到下面的散点图及一些统计量的值

8、.xi496.1yi168.6(xi-)21.989(yi-)20.244xiyi8 364.92(xi-)(yi-)0.674(1)由散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(2)根据表中数据,建立y关于x的回归方程.参考公式:相关系数r=,回归方程=+x中斜率和截距的最小二乘估计公式分别是=,=-.14.为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:阅读时间0,20)20,40)40,60)60,80)80,100)100,120人数810121172若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);(2)根据已知条件完

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论