版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上第一篇 化学热力学第一章 热力学基本定律.1-1 0.1kg C6H6(l)在 ,沸点353.35K下蒸发,已知 (C6H6) =30.80 kJ mol-1。试计算此过程Q,W,U和H值。解:等温等压相变 。n/mol =100/78 , H = Q = n = 39.5 kJ , W= - nRT = -3.77 kJ , U =Q+W=35.7 kJ1-2 设一礼堂的体积是1000m3,室温是290K,气压为,今欲将温度升至300K,需吸收热量多少?(若将空气视为理想气体,并已知其Cp,m为29.29 J K-1·mol-1。)解:理想气体等压升温(n
2、变)。Q=nCp,mT=(1000)/(8.314×290)×Cp,mT1.2×107J1-3 2 mol单原子理想气体,由600K,1.0MPa对抗恒外压 绝热膨胀到 。计算该过程的Q、W、U和H。(Cp ,m=2.5 R)解:理想气体绝热不可逆膨胀Q0 。UW ,即 nCV,m(T2-T1)= - p2 (V2-V1), 因V2= nRT2/ p2 , V1= nRT1/ p1 ,求出T2=384K。UWnCV,m(T2-T1)-5.39kJ ,HnCp,m(T2-T1)-8.98 kJ1-4 在298.15K,6×101.3kPa压力下,1 mol
3、单原子理想气体进行绝热膨胀,最后压力为,若为;(1)可逆膨胀 (2)对抗恒外压 膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所作的功;气体的热力学能变化及焓变。(已知Cp,m=2.5 R)。解:(1)绝热可逆膨胀:=5/3 , 过程方程 p11-T1= p21-T2, T2=145.6 K , UWnCV,m(T2-T1)-1.9 kJ , HnCp,m(T2-T1)-3.17kJ (2)对抗恒外压 膨胀 ,利用UW ,即 nCV,m(T2-T1)= - p2 (V2-V1) ,求出T2=198.8K。同理,UW-1.24kJ,H-2.07kJ。1-5 1 mol水在100,下变成同
4、温同压下的水蒸气(视水蒸气为理想气体),然后等温可逆膨胀到,计算全过程的U,H。已知 Hm(H2O , 373.15K,)= 40.67kJ mol-1 。解:过程为等温等压可逆相变理想气体等温可逆膨胀,对后一步U,H均为零。H Hm= 40.67kJ ,U=H (pV) = 37.57kJ1-6 某高压容器中含有未知气体,可能是氮气或氩气。在29K时取出一样品,从5dm3绝热可逆膨胀到6dm3,温度下降21K。能否判断容器中是何种气体?(若设单原子气体的CV,m=1.5R,双原子气体的CV,m=2.5R)解:绝热可逆膨胀: T2=277 K , 过程方程 T1V1-1= T2V2-1, 求出
5、=7/5 , 容器中是N2.1-7 1mol单原子理想气体(CV,m=1.5R ),温度为273K,体积为22.4dm3,经由A途径变化到温度为546K、体积仍为22.4dm3;再经由B途径变化到温度为546K、体积为44.8dm3;最后经由C途径使系统回到其初态。试求出:(1)各状态下的气体压力;(2)系统经由各途径时的Q,W,U,H值;(3)该循环过程的Q, W,U,H。解:A途径: 等容升温 ,B途径等温膨胀,C途径等压降温。(1) p1= , p2=2 , p3= (2) 理想气体: UnCV,mT, HnCp,mT .A途径, W=0, Q=U ,所以Q,W,U,H分别等于3.40
6、kJ , 0 , 3.40 kJ , 5.67 kJB途径,UH=0,Q=-W,所以Q,W,U,H分别等于3.15 kJ , -3.15 kJ , 0 , 0 ;C途径, W=-pV, Q=UW, 所以Q,W,U,H分别等于-5.67 kJ , 2.27 kJ , -3.40 kJ , -5.67 kJ(3)循环过程U=H=0 ,Q = -W= 3.40+3.15+(-5.67)= 0.88 kJ1-8 2mol某双原子分子理想气体,始态为202.65kPa,11.2dm3,经 pT=常数的可逆过程,压缩到终态为405.20kPa.求终态的体积V2温度T2及 W,U,H.( Cp ,m=3.5
7、 R).解:p1T1= p2T2 , T1=136.5K求出T2=68.3K,V2=2.8dm3, UnCV,mT=-2.84kJ,HnCp,mT=-3.97kJ , W = -2nRdT , W= -2nRT=2.27 kJ1-9 2mol,101.33kPa,373K的液态水放入一小球中,小球放入373K恒温真空箱中。打破小球,刚好使H2O(l)蒸发为101.33kPa,373K的H2O(g)(视H2O(g)为理想气体)求此过程的Q,W,U,H;若此蒸发过程在常压下进行,则Q,W,U,H的值各为多少?已知水的蒸发热在373K, 101.33kPa时为40.66kJmol1。.解:101.3
8、3kPa , 373K H2O(l)H2O(g) (1)等温等压可逆相变, H=Q=n Hm= 81.3kJ , W= -nR T=-6.2kJ, ,U=Q+W=75.1kJ(2)向真空蒸发W=0, 初、终态相同H=81.3kJ,,U =75.1kJ,Q =U 75.1kJ1-10将373K,50650Pa的水蒸气0.300m3等温恒外压压缩到101.325kPa(此时仍全为水气),后继续在101.325kPa恒温压缩到体积为30.0dm3时为止,(此时有一部分水蒸气凝聚成水).试计算此过程的Q,U,H.假设凝聚成水的体积忽略不计,水蒸气可视为理想气体,水的气化热为22.59 Jg1。.解:此
9、过程可以看作:n= 4.9mol理想气体等温压缩+n= 3.92mol水蒸气等温等压可逆相变。W -pV+ nRT=27 kJ, Q= pV+ n Hm= -174 kJ, 理想气体等温压缩U,H 为零,相变过程H= n Hm=-159 kJ, U=H-(pV)= H+ nRT=-147 kJ1-11 试以T为纵坐标,S为横坐标,画出卡诺循环的T-S图,并证明线条所围的面积就是系统吸的热和数值上等于对环境作的功。1-12 1mol单原子理想气体,可逆地沿T=aV (a为常数)的途径,自273K升温到573K,求此过程的W,U,S。解:可逆途径T=aV (a为常数)即等压可逆途径W=-nR(T2
10、-T1)= -2.49kJUnCV,mT=3.74kJ,S= nCp,mln(T2/T1)= 15.40JK11-13 1 mol理想气体由25,1MPa膨胀到0.1MPa,假定过程分别为: (1)等温可逆膨胀; (2)向真空膨胀。计算各过程的熵变。解:(1)等温可逆膨胀;S=nRln(V2/V1)= 19.14 J K-1 (2)初、终态相同S= 19.14 J K-11-14 2 mol、27、20dm3 理想气体,在等温条件下膨胀到50dm3 ,假定过程为:(1)可逆膨胀;(2)自由膨胀;(3)对抗恒外压 膨胀。计算以上各过程的Q、W、U、H及S。解:理想气体等温膨胀,U=H=0及S =
11、 nRln(V2/V1)= 15.2 J K-1。(1) 可逆膨胀W= - nRTln(V2/V1)= -4.57 kJ 、Q = - W=4.57 kJ(2) 自由膨胀 W=0, Q = - W=0 (3) 恒外压膨胀 W=-pV = -3.0 kJ, Q = - W=3.0 kJ1-15 5 mol某理想气体(Cp,m= 29.10 J K-1 mol-1 ),由始态(400 K,200 kPa)分别经下列不同过程变到该过程所指定的终态。试分别计算各过程的Q、W、U、H及S。 (1)等容加热到600K;(2)等压冷却到300K;(3)对抗恒外压 绝热膨胀到 ;(4)绝热可逆膨胀到 。解:理
12、想气体UnCV,mT , H=nCp,mT , S= nRln(p1/p2)+ nCp,mln(T2/T1)(1)等容升温 T2=600K, W=0, Q=U, S=nCV,mln(T2/T1) 所以Q,W,U,H,S分别等于20.79 kJ, 0, 20.79 kJ, 29.10 kJ, 42.15 J K-1(2)等压降温T2=300K ,W=-pV , Q=U W, S= nCp,mln(T2/T1) 所以Q,W,U,H,S分别等于-14.55 kJ, 4.16 kJ,10.4 kJ,14.55kJ,41.86JK-1(3)恒外压绝热膨胀Q=0, W=U, T2=342.9K, S= n
13、Rln(p1/p2)+ nCp,mln(T2/T1)=6.40 J K-1(4)绝热可逆膨胀S=0, Q=0,=7/5, p1V1= p2V2 , T2=328K所以Q,W,U,H,S分别等于0, 7.47 kJ, 7.47 kJ , 10.46 kJ, 0 1-16 汽车发动机(通常为点火式四冲程内燃机)的工作过程可理想化为如下循环过程(Otto循环):(1)利用飞轮的惯性吸入燃料气并进行绝热压缩 (2)点火、燃烧,气体在上死点处恒容升温 (3)气体绝热膨胀对外做功 (4)在下死点处排出气体恒容降温。设绝热指数 =1.4 、V1/V2=6.0,求该汽车发动机的理论效率。解:绝热可逆压缩 恒容
14、V2升温 绝热可逆膨胀 恒容V1降温 Q=CV(T3-T2), Q=CV(T1-T4), = |Q+Q|/ Q 利用绝热可逆过程方程求出=1-( T2- T3)/( T1-T4)= 1- (V1/V2)1-=1-6-0.4 1-17 1 mol水由始态( ,沸点372.8K)向真空蒸发变成372.8K, 水蒸气。计算该过程的S (已知水在372.8K时的 =40.60kJ mol-1)解:设计等温等压可逆相变S= /T=109 J K-11-18 已知水的沸点是100,Cp,m(H2O,l)=75.20 J K-1 mol-1, (H2O) =40.67 kJ·mol-1 ,Cp,m
15、(H2O,g)= 33.57 J K-1 mol-1,Cp,m和 均可视为常数。 (1)求过程:1 mol H2O(1,100, )1 mol H2O(g,100, )的S; (2)求过程:1 mol H2O(1,60, )1 mol H2O(g,60, )的U,H,S。解:(1) 等温等压可逆相变S= /T=109 J K-1(2) 设计等压过程H2O(1,60)H2O(1,100)H2O(g,100) H2O(g,60)H = Cp,m(l) T+ - Cp,m(g) T = 42.34kJ , U=HpV=HRT=39.57kJS= Cp,m(l) ln(T2/T1) + /T+ Cp,
16、m(g) ln(T1/T2)= 113.7 J K-11-19 4 mol理想气体从300K, 下等压加热到600K,求此过程的U,H,S,F,G。已知此理想气体的 (300K)=150.0J K-1 mol-1 ,Cp,m= 30.00 J K-1 mol-1 。解:UnCV,mT=26.0kJ , H=nCp,mT=36.0kJ , S= nCp,mln(T2/T1)= 83.2 J K-1(600K)= (300K)+ S =233.2J K-1 mol-1FU-(TS)= -203.9kJ , GH-(TS)= -193.9kJ1-20 将装有0.1mol乙醚液体的微小玻璃泡放入35,
17、 ,10dm3的恒温瓶中,其中已充满N2(g),将小玻璃泡打碎后,乙醚全部气化,形成的混合气体可视为理想气体。已知乙醚在Pa时的沸点为35,其 25.10 kJ·mol1 。计算: (1) 混合气体中乙醚的分压; (2) 氮气的H,S,G; (3) 乙醚的H,S,G。解:(1)p乙醚=nRT/V=25.6 kPa (2)该过程中氮气的压力、温度、体积均无变化H,S,G均为零。(3) 对乙醚而言可视为:等温等压可逆相变理想气体等温加压,H=n =2.51kJ,S= n /T-nRln(p2/p1)= 9.3 J K-1,G=H-TS=-0.35kJ1-21 某一单位化学反应在等温(29
18、8.15K)、等压( )下直接进行,放热40kJ,若放在可逆电池中进行则吸热4kJ。(1)计算该反应的rSm;(2)计算直接反应以及在可逆电池中反应的熵产生iS ;(3)计算反应的rHm;(4)计算系统对外可能作的最大电功。解:(1) rSm=QR/T=13.42 JK-1 (2) 直接反应iS=rSm- Q/T =147.6 JK-1, 可逆电池中反应iS=0 (3)rHm= Q =-40 kJ (4) WR =rGm=rHm- TrSm= - 44 kJ1-22 若已知在298.15K、 下,单位反应H2(g)+0.5O2(g) H2O(l) 直接进行放热285.90 kJ,在可逆电池中反
19、应放热48.62kJ。(1)求上述单位反应的逆反应(依然在298.15K、 的条件下)的H,S,G;(2)要使逆反应发生,环境最少需付出多少电功?为什么?解:(1) H=-Q=285.90 kJ ,S=QR/T=163 JK-1,G=H-TS=237.28 kJ(2) WR =rG=237.28 kJ1-23 液体水的体积与压力的关系为:V=V0(1-p),已知膨胀系数 = = 2.0×10-4K-1,压缩系数= = 4.84×10-10 Pa-1 ;25,1.013×105 Pa下V0=1.002 cm3·g -1 。试计算1 mol水在25由1.01
20、3×105 Pa加压到1.013×106 Pa时的U,H,S,F,G。解:T=298K, V0=18.036×10-6m3 mol-1 ,= -T - p =-T V0 - p V0= -(1.075×10-6+8.7×10-15p) m3 mol-1U= =-0.98J ,同理 = V-T , = - , = - p , = V,积分求出H=15.45 J,S=-3.32×10-3 J,F=9.86×10-3 J,G=16.44 J。1-24 将1 kg 25的空气在等温、等压下完全分离为氧气和纯氮气,至少需要耗费多少非体
21、积功?假定空气由O2和N2组成,其分子数之比O2N2=2179;有关气体均可视为理想气体。解:1 kg 25的空气中n(O2)=7.28mol ,x(O2)=0.21, n(N2)=27.39mol ,x(N2)=0.79,混合过程G= n(O2)RTln x(O2)+ n(N2)RTln x(N2)= -44.15 kJ,所以完全分离至少需要耗费44.15kJ非体积功。1-25 将1molN2从 等温(298.15K)可逆压缩到6 ,求此过程的Q,W,U,H,F,G,S和iS。解:理想气体等温可逆过程U=H=0, W= -Q = nRTln(p2/p1) = 4.44kJS=- nRln(p
22、2/p1)= -14.9 JK-1 , iS=S- Q/T =0 ,F=G= -TS=4.44kJ1-26 若上题中初态的N2始终用6 的外压等温压缩到相同的终态,求此过程的Q,W,U, H,F,G,S和iS,并判断此过程的性质。 -12.39kJ , 12.39kJ , 0 , 0 , 4.44kJ , 4.44kJ , -14.90 JK-1 , 26.67 JK-1 解:U, H,F,G,S与上题相同。W= -Q = - p2V=12.39kJ, iS=S- Q/T =26.67 JK-1此过程为不可逆过程。1-30 证明:对于纯理想气体多方过程的摩尔热容 (1) (2) 由初态(p1,
23、V1)到终态(p2,V2)过程中所做的功 提示:所有满足pV n =K (K为常数,n是多方指数,可为任意实数。)的理想气体准静态过程都称之为多方过程。已经讨论过的可逆过程,如等压过程(n=0)、等温过程(n=1)、绝热过程(n= )、等容过程(n )都是特定情况下的多方过程。解:因 pV=RT, KV1-n=RT, KV-ndV=R dT/(1-n),W=-pdV= -K V-ndV= R dT/( n -1); dU=CVdT ,而Cn,m=Q/dT =(dU-W)/ dT=CV,m- R /( n -1), CV,m=R/( -1)可得(1)又 p1V1 n = p2V2 n= K ,W
24、=-pdV= -K V-ndV, 积分求出(2)的结果第二章多相多组分系统热力学 2-1 1.25时,将NaCl溶于1kg水中,形成溶液的体积V与NaCl物质的量 n之间关系以下式表示:V(cm3)=1001.38+16.625n+1.7738n3/2+0.1194n2,试计算1mol kg-1NaCl溶液中H2O及NaCl的偏摩尔体积。解:由偏摩尔量的定义得: 16.625+1.7738×1.5n1/2+0.1194×2 nn1 mol ,VNaCl=19.525cm3 mol-1,溶液体积V=1019.90cm3。n(H2O)=55.556 mol, 按集合公式:V=
25、n VNaCln(H2O) 求出 =18.006 cm3mol-1 2-2 在15, 下某酒窖中存有104dm3的酒,w(乙醇)= 96%。今欲加水调制为w(乙醇) = 56%的酒。试计算:(1)应加水多少dm3? (2) 能得到多少dm3 w(乙醇) = 56%的酒?已知:15, 时水的密度为0.9991kg dm-3;水与乙醇的偏摩尔体积为:w(乙醇) ×100 cm3 mol-1 V(C2H5OH)cm3 mol-1 96 14.61 58.01 56 17.11 56.58 解:按集合公式:V= n(C2H5OH) n(H2O) w(乙醇)= 96%时,104dm3的酒中n(
26、H2O)17860 mol、 n(C2H5OH) mol。(1) w(乙醇)= 56%,n(C2H5OH) mol时,n(H2O)应为 mol,故可求出应加水5752dm3。(2)再次利用集合公式求出w(乙醇) = 56%的酒为15267dm3。 2-3 乙腈的蒸气压在其标准沸点附近以3040 Pa K-1的变化率改变,又知其标准沸点为80,试计算乙腈在80的摩尔气化焓。解:vapHm=RT2(d lnp / dT)= RT2(dp / dT)/ p=8.314×(273.15+80)2×3040/105=31.5 kJ mol-1。 2-4 水在100时蒸气压为101 3
27、25Pa,气化焓为40638 J mol-1 。试分别求出在下列各种情况下,水的蒸气压与温度关系式ln(p*Pa)= f (T),并计算80水的蒸气压(实测值为0.473×105Pa) (1)设气化焓Hm = 40.638 kJ mol-1为常数; (2) Cp.m (H2O,g) = 33.571 J K-1 mol-1 , Cp.m (H2O,l)=75.296 J K-1 mol-1均为常数; (3) Cp.m (H2O,g) =30.12 +11.30 ×10-3T (J K-1 mol-1 ); Cp.m (H2O,l) = 75.296 J K-1 mol-1
28、为常数;解:ln(p*Pa)= ln(101 325) ;Hm40638 ;Cp.mCp.m (H2O,g)Cp.m (H2O,l)(1) ln(p*Pa)= - 4888/T +24.623,计算出80水的蒸气压为0.482×105 Pa。(2) ln(p*Pa)= - 6761/T 5.019 ln T+59.37 , 计算出80水的蒸气压为0.479×105 Pa。 (3) ln(p*Pa)= - 6726/T 5.433 ln T+1.36×10-3T+ 61.22 , 计算出蒸气压为0.479×105 Pa。 2-5 固体CO2的饱和蒸气压与温
29、度的关系为:lg ( p* / Pa) = -1353 /( T / K)+11.957已知其熔化焓 = 8326 J mol-1 ,三相点温度为 -56.6。 (1) 求三相点的压力; (2) 在100kPa下CO2能否以液态存在? (3) 找出液体CO2的饱和蒸气压与温度的关系式。解:(1) lg ( p* / Pa) = -1353 /( 273.15-56.6)+11.957=5.709,三相点的压力为5.13×10Pa(3) =2.303×1353×8.314 J mol-1; = - =17.58 kJ mol-1 , 再利用三相点温度、压力便可求出液
30、体CO2的饱和蒸气压与温度的关系式:lg ( p* / Pa)= -918.2 /( T / K)+9.952。 2-7 在40时,将1.0 mol C2H5Br和2.0 mol C2H5I的混合物(均为液体)放在真空容器中,假设其为理想混合物,且p*(C2H5Br) =107.0 kPa , p*(C2H5I)=33.6 kPa,试求: (1)起始气相的压力和组成(气相体积不大,可忽略由蒸发所引起的溶液组成的变化); (2)若此容器有一可移动的活塞,可让液相在此温度下尽量蒸发。当只剩下最后一滴液体时,此液体混合物的组成和蒸气压为若干? 解:(1)起始气相的压力p = xBr p* (C2H5
31、Br)(1-xBr )p*(C2H5I)58.07kPa。 起始气相的组成yBr= p/xBr p* (C2H5Br)0.614(2) 蒸气组成 yBr1/3 ;yBrxBr p* (C2H5Br)/xBr p* (C2H5Br)(1-xBr )p*(C2H5I)解出 xBr=0.136 ,p =43.58kPa 2-8 在25, 时把苯(组分1)和甲苯(组分2)混合成理想液态混合物,求1摩尔C6H6从x1=0.8(I态)稀释到x1=0.6(态)这一过程中G。解:G 1() 1(I)RT lnx1() /x1(I)=8.314×298.15 ln0.6 /0.8713 J 2-9 2
32、0时溶液A的组成为1NH3·8H2O,其蒸气压为1.07×104Pa,溶液B的组成为1NH3·21H2O,其蒸气压为3.60×103Pa。 (1)从大量的A中转移1molNH3到大量的B中,求G。 (2)在20时,若将压力为 的1molNH3(g)溶解在大量的溶液B中,求G。解:(1)G (B) (A)RT lnx (B) /x (A)=8.314×298.15 ln(9 /22)2.18 kJ(2) G (B) *RT lnx (B)=8.314×298.15 ln(1 /22)-7.53 kJ 2-10 C6 H5 Cl和C6 H
33、5 Br相混合可构成理想液态混合物。136.7时,纯C6 H5 Cl和纯C6 H5 Br的蒸气压分别为1.150×105 Pa和0.604×105 Pa。计算: (1)要使混合物在101 325Pa下沸点为136.7,则混合物应配成怎样的组成? (2)在136.7时,要使平衡蒸气相中两个物质的蒸气压相等,混合物的组成又如何?解:(1) 101 325=1.150×105 (1-xBr)+ 0.604×105 xBr , 求出xBr0.250。(2) 1.150×105 (1-xBr)0.604×105 xBr,求出xBr0.656 2
34、-11 100时,纯CCl4及SnCl4的蒸气压分别为1.933×105 Pa及0.666×105 Pa。这两种液体可组成理想液态混合物。假定以某种配比混合成的这种混合物,在外压为1.013×105 Pa的条件下,加热到100时开始沸腾。计算: (1)该混合物的组成; (2)该混合物开始沸腾时的第一个气泡的组成。解:(1)该混合物中含CCl4为 x,101 325=0.666×105 (1-x)+ 1.933×105 x,求出x0.274。(2)第一个气泡中含CCl4为 y1.933×105 x/101 3250.522。 2-12
35、xB=0.001的A-B二组分理想液态混合物,在1.013×10Pa下加热到80开始沸腾,已知纯A液体相同压力下的沸点为90,假定A液体适用特鲁顿规则,计算当xB=0.002时在80的蒸气压和平衡气相组成。解: (A)88(273.15+90)=31957 J mol-1, 纯A液体在1.013×10Pa下沸点为90, 所以 ln ( p* / Pa)= -3843.7 /( T / K)+22.11。可以求出p* (A)74.7 kPa , p* (B) 26674.7 kPa ,蒸气总压p= p* (A)(1- xB)+ p* (B) xB=128 kPa , yB=
36、pB/ p=0.417 2-13 20时,当HCl的分压为1.013×10 Pa,它在苯中的平衡组成x(HCl)为0.0425。若20时纯苯的蒸气压为0.100×10Pa,问苯与HCl的总压为1.013×10Pa时,100g苯中至多可溶解HCl多少克。解:p(总)= p* (苯)(1- x HCl)+kx x HCl , kx=1.013×10/ 0.0425 Pa , 求出x HCl=0. , 所以100g苯中至多可溶解HCl 1.87克。 2-14 樟脑的熔点是172,kf = 40K kg mol-1 (这个数很大,因此用樟脑作溶剂测溶质的摩尔质量
37、,通常只需几毫克的溶质就够了)。今有7.900mg酚酞和129 mg樟脑的混合物,测得该溶液的凝固点比樟脑低8.00。求酚酞的相对分子质量。解:T= kf b , b=(106/129)7.9×10-3/M , 所以酚酞的相对分子质量M=306 g mol-1 2-15 在15时1摩尔NaOH溶于4.6摩尔H2O中所形成的溶液蒸气压为596.5Pa,在此温度下纯水的蒸气压力1705Pa,设纯水活度为1。试计算: (1)溶液中水的活度因子; (2)水在溶液中的化学势与纯水化学势之差。解:(1) pA = xA p* (A), =596.5/1705×(4.6/5.6)=0.4
38、26 。 (2) G (H2O, xA) *( H2O)RT ln xA= -2.514kJ 2-16 研究C2H5OH(A) - H2O(B)混合物。在50时的一次实验结果如下: xA P/Pa PA/Pa PB/Pa 0.4439 0.8817 24 832 28 884 14 182 21 433 10 650 7 451 已知该温度下纯乙醇的蒸气压 =29 444Pa;纯水的蒸气压 =12 331Pa。试以纯液体为标准态,根据上述实验数据,计算乙醇及水的活度因子和活度。解:pA = AxA p* (A), A = pA/xA p* (A) , a A= pA / p* (A),可以求出
39、 xA A , a A B ,a B 0.4439 0.8817 1.085 , 0.4817 0.8256, 0 .7279 1.553, 0.8637 5.108, 0.6043 2-17 在 下,HNO3和水组成的气液平衡系统:T / K 373.1 383.1 393.1 395.1 393.1 388.1 383.1 373.1 358.6 x(HNO3)y(HNO3) 0.00 0.11 0.27 0.38 0.45 0.52 0.60 0.75 1.000.00 0.01 0.17 0.38 0.70 0.90 0.96 0.98 1.00 (1)画出此系统的沸点组成图。 (2)
40、将3molHNO3和2molH2O的混合气冷却到387.1K,互成平衡的两相组成如何?互比量为多少? (3)将3molHNO3和2molH2O的混合物蒸馏,待溶液沸点升高4K时,馏出物组成约为多少? (4)将(3)中混合物进行完全分馏,得到何物?解:(2) x(HNO3)=0.53, y(HNO3)=0.91 , n(g) / n(l) = 0.226 (3)馏出物组成x(HNO3)=0.91 (4)馏出物纯HNO3残留物组成x(HNO3)=0.38 2-18 在303K时,将40g酚和60g水混合,系统分为两层,在酚层中含酚70%,在水层中含水92%,试计算两层液体的质量各为多少? 酚层51
41、.6g , 水层48.4g解:酚层液体的质量为 w, 0.70 w+(1-0.92)(100- w)=40, w=51.6 g 2-20 金属A、B熔融液冷却曲线的转折温度和平台温度如下表所列,请据此画出相图,标出相区的相态和化合物的组成。 解: xA 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 转折温度 /平台温度 / 950 900 900 1000 1000 750 550 5751000 800 800 800 800 1100 500 500 500 500 600 2-26 金属A、B形成化合物AB3、A2B3。固体A、B、AB3、A2B
42、3彼此不互溶,但在液态下能完全互溶。A、B的正常熔点分别为600、1100。化合物A2B3的熔点为900,与A形成的低共熔点为450。化合物AB3在800下分解为A2B3和溶液,与B形成的低共熔点为650。根据上述数据 (1)画出A-B系统的熔点-组成图,并标示出图中各区的相态及成分; (2)画出xA=0.90、xA=0.10熔化液的步冷曲线,注明步冷曲线转折点处系统相态及成分的变化和步冷曲线各段的相态及成分。解: 2-22 已知101.325kPa,固体A和B的熔点分别为500和800,它们可生成固体化合物AB(s)。AB(s)加热至400时分解为AB2(s)和xB=0.40的液态混合物。A
43、B2(s)在600分解为B(s)和xB=0.55的液态混合物。该系统有一最低共熔点,温度为300,对应的组成xB=0.10。 (1)根据以上数据,画出该系统的熔点-组成图,并标出图中各相区的相态与成分; (2)将xA=0.20的液态A,B混合物120mol,冷却接近到600,问最多可获得纯B多少摩尔?解: (2) 66.7 mol 第三章 化学反应系统热力学 练 习 题3-4 在291333K温度范围内,下述各物质的Cp,m /(JK-1mol-1)分别为 CH4(g): 35.715; O2(g): 29.36; CO2(g): 37.13; H2O(l): 75.30;在298.2K时,反
44、应 CH4 (g) + 2O2(g)=CO2(g) + 2H2O(l) 的恒压反应热效应为 -890.34kJmol-1。.求 333K时该反应的恒容反应热效应为多少?解:(1) 求333K时恒压反应热效应: H(333K) =H(298.2K)+ = -887.0 kJ mol-1(2) 求恒容反应热效应: U(333K) =H(333K) - = -881.6kJmol-1 3-5 由以下数据计算2,2,3,3四甲基丁烷的标准生成热。已知: H(g)=217.94 kJ mol-1, C(g)=718.38 kJmol-1,C-C=344 kJmol-1,C-H= 414 kJmol-1。
45、解: CH3C(CH3)2 C(CH3)2 CH3 (g)=18 H(g)+8 C(g)-7C-C-18C-H = -190 kJ mol-1 3-6 已知25时下列数据: 物 质 CH3OH(l) CH3OH(g) (298.15 K) /(kJ mol-1) - 238.7 - 200.7 (298.15 K) /(J K-1 mol-1) 127.0 239.7 计算25时甲醇的饱和蒸气压p*。解:CH3OH(l)CH3OH(g) , =-200.7-(-238.7)-T239.7-127.0×10-3= 4.4 kJ mol-1 = , =p*/ , p*=1.7×
46、104Pa 3-8 已知反应C(石墨)+H2O(g)CO(g)+H2(g) 的 (298.15 K) =133 kJ mol-1,计算该反应在125时的 (398.15K)。假定各物质在25125范围内的平均等压摩尔热容如下表: 物 质 C(石墨) H2O(g) CO(g) H2(g) Cp,m/(J K-1 mol-1) 8.64 29.11 28.0 33.51 解: (398.15K)= (298.15 K)+ Cp,mT=135 kJ mol-1 3-9 已知下述单位反应:H2(g)+I2(s)=2HI(g); (291K)= 49.46 kJ mol-1。I2(s)在熔点386.6K
47、熔化吸热16.74kJ mol-1。I2(l)在沸点457.4K, 下吸热42.68kJ mol-1。I2(s)在291K-386.6K间平均热容为55.65 J K-1mol-1。I2(l)在386.6-457.4K间的平均热容为62.76 J K-1mol-1。求上述单位反应在473.15K的rHm值。三种气体摩尔热容是:Cp,mH2(g)=29.08-0.00084T (JK-1mol-1); Cp,mI2(g)=35.56-0.00054T (J K-1mol-1); Cp,mHI(g) = 28.07-0.00021T (J K-1mol-1)。解:rHm(473.15K)= + +
48、(-42.68kJ mol-1)+ +(- 16.74kJ mol-1)+ + (291K)+ =-20.4 kJ mol-1 3-10 已知CO和CH3OH(g),25的标准摩尔生成焓 分别为-110.52和 - 201.2 kJ mol-1; CO、H2、CH3OH(l),25的标准摩尔熵 分别为197.56、130.57、127.0 J K-1mol-1。又知25甲醇的饱和蒸气压为16582Pa,气化焓为38.0 kJ mol-1。蒸气可视为理想气体,求反应CO(g)+2H2(g)=CH3OH(g)的 (298.15K)及 (298.15K)。解: =-201.2-(-110.52)=
49、-90.68 kJ mol-1, CH3OH(g)= 127.0+38.0×103/298+Rln(16.582/100)=239.4 J K-1mol-1, =239.4-(197.56+2×130.57)=-219.3 J K-1mol-1 ,(298.15K)= -T =-25.3kJ mol-1, (298.15K)= 2.7×104 3-11 已知 (H2O,l,298.15K) = - 237.19 kJmol-1,25时水的饱和蒸气压p* (H2O)=3.167kPa,若H2O(g)可视为理想气体,求 (H2O,g,298.15K)。解: (H2O,
50、g)= (H2O,l)-RTln(p*/ )= - 228.6 kJ mol-1 3.12 已知 (CH3OH,g,298.15K) = -162.51 kJ·mol-1, 25时p*(CH3OH)=16.27kPa,若CH3OH(g)可视为理想气体,求 (CH3OH,l,298.15K)。解: (CH3OH,l)= (CH3OH,g) +RTln(p*/ )= -167 kJ mol-1 3-13 已知Br2(l)的饱和蒸气压p*(Br2)=28574 Pa,求反应Br2(l) = Br2(g)的 (298.15K)。解: = -RTln(p*/ )=3.14 kJ mol-1 3
51、-14 已知理想气体间的反应CO(g)+H2O(g)=CO2(g)+H2(g)在973.15K时 = 0.71。 (1) 系统中四种气体的分压均为1.50 时,上述反应的自发方向如何?(2) p(CO)=10 ,p(H2O)=5 ,p(CO2)=p(H2)=1.5 时,反应的自发方向又如何?解:(1)J= p(CO2) p(H2)/ p(CO) p(H2O)=1> 逆向自发 (2) J=0.045< 正向自发 3.15 已知反应CO(g)+H2(g)=HCOH(1) (298.15K) = 28.95 kJ mol-1,而298.15K时 p*(HCOH)=199.98kPa,求2
52、98.15K时,反应HCHO(g)=CO(g)+H2(g)的 (298.15K)。解: (298.15K)= - 28.95 -RTln(p*/ )=-27.265 kJ mol-1 , =6×1043-16 通常钢瓶中装的氮气含有少量的氧气,在实验中为除去氧气,可将气体通过高温下的铜,使发生下述反应:2Cu(s) + 0.5 O2(g) = Cu2O(s) 已知此反应的 /(J mol-1)= -+63.01(T/K)。今若在600时反应达到平衡,问经此手续处理后,氮气中剩余氧的浓度为若干?解: (600)= - 111.7 kJ mol-1 =4.8×106 ,O2=
53、/RT( )2= 5.9×10-16 mol dm-3 3-17 某合成氨厂用的氢气是由天然气CH4与水蒸气反应而来,其反应为CH4(g)+H2O(g)=CO(g)+3H2(g)。已知此反应在1000K下进行的 =0.2656,如果起始时CH4(g)和H2O(g)的物质的量之比为12,试计算当要求CH4的转化率为75%时,反应系统的压力应为多少。解:起始时CH4(g)的压力为p0 ,CH4的转化率为75%时=0.75 p0(3×0.75 p0)3( )2/0.25 p0(2 p0-0.75 p0) 求出p0=9.987 kPa ,反应系统的压力为44.9kPa 3-18 Ni和CO能生成羰基镍:Ni(s)+4CO(g)=Ni(CO)4(g),羰基镍对人体有危害。若150及含有w(CO)=0.005的混合气通过Ni表面,欲使wNi(CO)41×10-9,问:气体压力不应超过多大?已知混合气平均分子量为10.7,上述反应150时, =6.0×10-6。解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保密协议格式样本模板合同范本
- 互联网贷款担保抵押合同
- 2024年度食品生产设备采购合同3篇
- 2024年度二手房绿化工程设计与施工合同3篇
- 二零二四年度技术服务合同标的及技术服务内容2篇
- 二零二四年度股权转让合同中关于业绩承诺的补充条款2篇
- 2024年度有线电视网络工程合同
- 2024年度甲方提供乙方信息技术支持合同2篇
- 二零二四年度商标许可使用合同标的为独家使用权2篇
- 2024年度二手珠宝交易与鉴定服务合同3篇
- 超星尔雅学习通《创新思维训练(中山大学)》2024章节测试含答案
- 计算机专业大学生职业生涯规划 (修改)
- 高压旋喷桩施工技术
- 保安安全管理培训课件
- 颌骨囊肿护理常规
- 晋江市八年级上学期期末语文试题(含答案)
- 《小学数学课程标准与教材研究》试卷及答案
- 乡村振兴应知应会基本知识
- 住院精神疾病患者攻击行为预防-护理团标
- 月子中心合作方案
- 《中国移动渠道》课件
评论
0/150
提交评论