在教学中培养学生数学思维能力初探_第1页
在教学中培养学生数学思维能力初探_第2页
在教学中培养学生数学思维能力初探_第3页
在教学中培养学生数学思维能力初探_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、在教学中培养学生数学思维能力初探上海市浦东新区晨阳小学杜宏杰数学课堂教学的实施是数学思维活动的展开过程, 教师在教学中不应以“传授”思维过程和结论为主, 而应讲究思维方法的探索、 思维品质的培养。下面,我结合自己的教学实践,谈谈在小学数学教学中如何培养学生的思维能力。一、设置情境,诱发学生积极思维“问题”是数学的载体, 而设计一个好问题则更是激发学生思维火花的催化剂。亚里士多德认为:“思维自疑问和惊奇开始。”在数学教学过程中, 教师要善于设疑才能激起学生的积极的思维, 再通过释疑、解决问题等环节,使学生实现掌握知识、开发智力和形成良好思维习惯的目标。例如,在教学商不变性质一课时,我先利用多媒体

2、课件向学生播放了猴王分桃的故事: 今天花果山上特别热闹, 因为今天是一年一度的分桃节。桃树上挂满了桃子,桃树下坐着一群猴子,它们等猴王来分桃子。大家都希望能多分到一些桃子。猴王准时来到。猴王对小猴子说:“给你 6 个桃子,平均分给3 只猴子吧。”小猴子说:“太少了。 太少了。”猴王说:“那就给你 60 个桃子,平均分给30只猴子,怎么样?”小猴子挠挠头皮说:“大王,请你开恩,再多给点吧。”猴王一拍胸脯说:“那好吧,给你 600 个桃子,平均分给300 只猴子, 这下总该满意了吧?! ”可小猴还是一个劲地嚷着: “不够! 不够! ”这时, 我就问学生: 为什么猴王把桃子数增加了那么多,学生们一听

3、小猴子还是说不够呢?这就是我们今天要学习的新内容。这是学习的新内容, 学习兴趣一下子就被激发了出来。 于是我将小猴三次分桃的过程用三个算式表示成:63=2,6030 =2,600300 =2,然后让学生观察这三个算式的特点及变化规律, 从而得出了“商不变性质”这一结论。 学生们就在如此轻松、 愉快的氛围中弄清楚了知识的形成过程和结果。二、引导猜想,培养学生的思维品质猜想是一种创造性思维活动, 它可导出新颖独特的思维成果。 在 数学课堂教学中,教师要引导学生勤于猜想,敢于猜想,善于猜想,鼓励学生思考, 让他们自由想象, 从而达到培养学生的创造性思维能力。1 通过猜想,培养思维的独创性。现代教学是

4、发生在教师和学生之间互相传输信息的过程, 因而在教学方法上, 教师必须最大限度地调动学生的学习积极性, 鼓励他们“标新立异”,激发他们猜想更好的方法。例如,计算8 + 98 + 998 + 9998 + 99998 = ?若采用逐项累加法,结果非常繁琐。若引导学生猜想将8 分解成 2 2 2 2 ,然后利用加法交换律和加法结合律进行计算,即原式=2 + 2 + 2 + 2 + 98 +998 +9998 +99998 = (2 + 98) + (2 + 998) + (2+9998 ) + (2 + 99998 ) =100 +1000 +10000 +100000 =111100 ,很快就得

5、出 了式题的计算结果,让学生体验到了学习的乐趣。这样,通过充分引导学生大胆猜想, 激发了学生的学习兴趣, 同时也培养了学生思维的独创性。2 通过猜想,培养思维的发散性。发散思维是创造思维的重要组成部分。 它不受一定的解题模式的束缚,从问题个性中探求共性,寻求变异,沿着不同方向,不同角度去猜想、延伸、开拓。在数学教学中,一般可采用一题多解的训练,培养和锻炼思维的发散性。例如, 李军家与学校之间的距离是1020 米, 李军 3 分钟走 255米, 照这样计算, 李军到学校还需几分钟?启发学生用不同的思考方法探解。解法 1 :求李军到学校还需几分钟,就是求余下的路程所需的时间。 “从 3 分钟行 2

6、55 米”, 可求出李军速度为 ( 2553 ) , 而余下的 路程是(1020 255 ),然后根据“路程速度=时间”得出:(1020 255 ) (2553 ) = 9 (分)。解法 2 :求李军到学校还需几分钟,也可先求李军走完全程的时间, 然后减去已行路程的时间, 即得到余下路程的时间 1020( 2553 ) 3 = 9 (分)。解法 3 :用倍比法解,将已行的路程255 米看作“ 1 ”倍数,全程 1020 米是已行的 255 米的 4 倍,行 255 米用 3 分钟,那么行完全程 1020 米就得用 12 分钟,然后减去已行的时间,即得出: 3(1020255 ) -3 = 9

7、(分)。通过上述的练习,引导学生从多种角度,不同方向思考问题,这不仅能提高学生灵活运用知识的能力和解题技巧, 而且可以发挥学生的独特见解,增强思维发散性的辐射力。此外,一题多变、一空多填等训练,同样也能培养和锻炼学生发散性思维品质。3 通过猜想,培养思维的灵活性和敏捷性。“好动、好想、好奇”是学生共同具备的心理特征。教师应抓住学生这一心理特征, 鼓励学生大胆猜想, 使学生自觉地沟通数学知识的纵横联系,挖掘隐含条件;巧妙地构造某个数学对象,迂回转化;灵活地运用各种思维方法和方式,找出解题的各种途径。例如,求下图的周长(单位: cm )若此题仅会运用周长定义把每条边长相加: 6 12 10 8(1

8、06) + (12 8) =44 (cm),这就显得思维呆板了。若能猜想到将原多边形添上辅助线转化成一个长方形。如图:原线段 a 和 b 的长度就是两条辅助线的长度,这时只需采用长方形周长计算公式进行运算,就能得到本题的结果,即( 12 10) 2=44 (cm )。三、新旧联系,提升学生的思维层次数学知识具有严密的逻辑系统。 就学生的学习过程来说, 某些旧知识是新知识的基础,新知识又是旧知识的引伸和发展,学生的认识活动也总是以已有的旧知识和经验为前提。 在此类知识教学中要尽可能复习有关的旧知识,充分利用已有的知识来搭桥铺路,引导学生运用知识迁移规律,在获取新知识的过程中提升学生的思维层次。例如,在教学梯形的面积一课时,我先复习平行四边形面积公式推导的方法, 然后根据梯形面积公式推导的方法与平行四边形面积公式推导的方法相似,进而采用平行四边形面积公式推导的方法来 推导梯形面积的公式:先将图形转化成已经会计算面积的图形, 然后 通过探索研究图形与已学图形之间的联系,从而找出梯形面积的计算 方法。这样既能引导学生复习旧知识又把新知识纳入原来的知识系统 中,使前后知识得到有机衔接,融会贯通,丰富

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论