版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中高一数学必修1各章知识点总结第一章 集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性; 2.元素的互异性; 3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整
2、体性。3、集合的表示: 如我校的篮球队员,太平洋,大西洋,印度洋,北冰洋1. 用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,52集合的表示方法:列举法与描述法。非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 aA ,相反,a不属于集合A 记作 a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。语言描述法:例:不是直
3、角三角形的三角形数学式子描述法:例:不等式x-3>2的解集是x?R| x-3>2或x| x-3>24、集合的分类:1有限集 含有有限个元素的集合2无限集 含有无限个元素的集合3空集 不含任何元素的集合 例:x|x2=5二、集合间的基本关系1.“包含”关系子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2“相等”关系(55,且55,则5=5)实例:设 A=x|x2-1=0 B=-1,1 “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个
4、元素都是集合A的元素,我们就说集合A等于集合B,即:A=B 任何一个集合是它本身的子集。AíA真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)如果 AíB, BíC ,那么 AíC 如果AíB 同时 BíA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的运算1交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作”A交B”),即AB=x|xA,且xB2、并集的定义:一般地,由所有属于集
5、合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作”A并B”),即AB=x|xA,或xB3、交集与并集的性质:AA = A, A= , AB = BA,AA = A,A= A ,AB = BA.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。(3)性质:CU(C UA)=A (C UA)A= (CUA)A=U第二章 基本初等函数一、指数函数(一)指数与指数幂的运算1根式的概念:一般地,如
6、果,那么叫做的次方根(n th root),其中>1,且*当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数此时,的次方根用符号表示式子叫做根式(radical),这里叫做根指数(radical exponent),叫做被开方数(radicand)当是偶数时,正数的次方根有两个,这两个数互为相反数此时,正数的正的次方根用符号表示,负的次方根用符号表示正的次方根与负的次方根可以合并成±(>0)由此可得:负数没有偶次方根;0的任何次方根都是0,记作。注意:当是奇数时,当是偶数时,2分数指数幂正数的分数指数幂的意义,规定:,0的正分数指数幂等于0,0的负分数指数幂没有意
7、义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂3实数指数幂的运算性质(1)·;(2);(3)(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和12、 指数函数的图象和性质a>10<a<1图象特征函数性质向x、y轴正负方向无限延伸函数的定义域为R图象关于原点和y轴不对称非奇非偶函数函数图象都在x轴上方函数的值域为R+函数图象都过定点(0,1)自
8、左向右看,图象逐渐上升自左向右看,图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于1图象上升趋势是越来越陡图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快;函数值开始减小极快,到了某一值后减小速度较慢;注意:利用函数的单调性,结合图象还可以看出:(1)在a,b上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;(4)当时,若,则;二、对数函数(一)对数1对数的概念:一般地,如果,那么数叫做以为底的对数,记作:( 底数, 真数, 对数式)说明: 注意底数
9、的限制,且; ; 注意对数的书写格式两个重要对数: 常用对数:以10为底的对数; 自然对数:以无理数为底的对数的对数对数式与指数式的互化对数式 指数式对数底数 幂底数对数 指数真数 幂(二)对数的运算性质如果,且,那么:(1)·;(2);(3) 注意:换底公式(,且;,且;)利用换底公式推导下面的结论(1);(2)(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+)注意: 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:, 都不是对数函数,而只能称其为对数型函数 对数函数对底数的限制:,且2、对数函数的性质:a>10<a
10、<1图象特征函数性质函数图象都在y轴右侧函数的定义域为(0,)图象关于原点和y轴不对称非奇非偶函数向y轴正负方向无限延伸函数的值域为R函数图象都过定点(1,0)自左向右看,图象逐渐上升自左向右看,图象逐渐下降增函数减函数第一象限的图象纵坐标都大于0第一象限的图象纵坐标都大于0第二象限的图象纵坐标都小于0第二象限的图象纵坐标都小于0(三)幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数2、幂函数性质归纳(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(
11、3)时,幂函数的图象在区间上是减函数在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点3、函数零点的求法:求函数的零点: (代数法)求方程的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点4、二次函数的零点:二次函数),方程有两不等实根,二次函数的图象与轴有两个交点
12、,二次函数有两个零点),方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点),方程无实根,二次函数的图象与轴无交点,二次函数无零点函数附:一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数中;余切函数中;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:1、换元法;2、配方法;
13、3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法四、函数的最值的常用求法: 1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常用结论:1、若均为某区间上的增(减)函数,则在这个区间上也为增(减)函数2、若为增(减)函数,则为减(增)函数3、若与的单调性相同,则是增函数;若与的单调性不同,则是减函数。4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。六、函数奇偶性的常用结论:1、如果一个奇函数在处有定义,则,如果一个函数既是奇函数又是偶函数,则(反之
14、不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4、两个函数和复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。5、若函数的定义域关于原点对称,则可以表示为,该式的特点是:右端为一个奇函数和一个偶函数的和。表1指数函数对数数函数定义域值域图象性质过定点过定点减函数增函数减函数增函数表2幂函数奇函数偶函数第一象限性质减函数增函数过定点高中数学必修1检测题 本试卷分第卷(选择题)和第卷(非选择题)两部分.共120分,考试时间90分钟.第卷(选择题,共48分)一、选择题
15、:本大题共12小题,每小题4分,共48分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1已知全集)等于( )A2,4,6B1,3,5C2,4,5D2,52已知集合,则下列式子表示正确的有( ) A1个B2个C3个D4个3若能构成映射,下列说法正确的有 ( )(1)A中的任一元素在B中必须有像且唯一;(2)A中的多个元素可以在B中有相同的像;(3)B中的多个元素可以在A中有相同的原像;(4)像的集合就是集合B.A、1个 B、2个 C、3个 D、4个4、如果函数在区间上单调递减,那么实数的取值范围是( )A、 B、 C、 D、 5、下列各组函数是同一函数的是 ( )与;与;与;与。A、
16、B、 C、 D、6根据表格中的数据,可以断定方程的一个根所在的区间是( )101230.3712.727.3920.0912345A(1,0)B(0,1)C(1,2)D(2,3)7若 ( )ABCD8、 若定义运算,则函数的值域是( )A B C D 9函数上的最大值与最小值的和为3,则( )AB2C4D10. 下列函数中,在上为增函数的是( )A、 B、C、 D、11下表显示出函数值随自变量变化的一组数据,判断它最可能的函数模型是( )x45678910y15171921232527A一次函数模型B二次函数模型C指数函数模型D对数函数模型12、下列所给4个图象中,与所给3件事吻合最好的顺序为
17、 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。(1)(2)(3)(4)时间时间时间时间离开家的距离离开家的距离离开家的距离离开家的距离A、(1)(2)(4) B、(4)(2)(3) C、(4)(1)(3) D、(4)(1)(2)第卷(非选择题 共72分)二、填空题:本大题4小题,每小题4分,共16分. 把正确答案填在题横线上.13函数的定义域为 .14. 若是一次函数,且,则= _.15已知幂函数的图象过点 .16若一
18、次函数有一个零点2,那么函数的零点是 .三、解答题:本大题共5小题,共56分,解答应写出文字说明,证明过程或演算步骤.17(本小题10分)已知集合,若,求实数a的取值范围。18(本小题满分10分)已知定义在上的函数是偶函数,且时,(1)当时,求解析式;(2)写出的单调递增区间。19(本小题满分12分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公
19、司的月收益最大?最大月收益是多少?20、(本小题满分12分)已知函数,(1)画出函数图像;(2)求的值;(3)当时,求取值的集合. 21(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:x0.511.51.71.922.12.22.33457y8.554.174.054.00544.0054.0024.044.354.87.57请观察表中y值随x值变化的特点,完成以下的问题.函数在区间(0,2)上递减;函数在区间 上递增.当 时, .证明:函数在区间(0,2)递减.思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)参考答案一、选择题:每小题4分,12个小题共48分.1.A 2.C 3.B 4.A. 5.C 6.C 7.A 8.C 9.B 10. A 11.D. 12.D二、填空题:每小题4分,共16分. 13 14.2x-或2x+1 153 16三、解答题(共56分)17. (本小题10分) 解: (1)当时,有 (2)当时,有又,则有 由以上可知18(本小题10分)(1)时,;(2)和19(本小题12分)解:(1)租金增加了600元,所以未出租的车有12辆,一共出租了88辆。2分 (2)设每辆车的月租金为x元,(x3000
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年忻州道路货物运输驾驶员考试
- 2025年鹤壁普通货运从业资格证考试
- 化学教学科研课件
- 2025年福建b2考货运资格证要多久
- 2025年天水a2货运从业资格证模拟考试
- 儿童教育与心理发展培训
- 托幼机构手足口病防控
- 2025民营医院的劳动合同范文
- 2025销售人员劳动合同
- 2025消防工程施工劳务合同
- 2023年复旦大学军事理论题库
- 汽车零部件DFMEA模板
- YY/T 0471.3-2004接触性创面敷料试验方法 第3部分:阻水性
- GB/T 7549-2008球笼式同步万向联轴器
- GB/T 35658-2017道路运输车辆卫星定位系统平台技术要求
- GB/T 34898-2017微机电系统(MEMS)技术MEMS谐振敏感元件非线性振动测试方法
- GB/T 28888-2012下水道及化粪池气体监测技术要求
- GB/T 2467.3-1996硫铁矿和硫精矿中铅含量的测定第3部分:EDTA容量法
- 第6章 特征的提取与选择
- 企业文化建设三年规划(最终稿)
- 班组活动记录(危化品储存)
评论
0/150
提交评论