![情态动词will 语义排歧 支持向量机 人工神经网络 特征提取_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-2/24/bf9f930c-68b9-407a-ad64-987b450bd4ea/bf9f930c-68b9-407a-ad64-987b450bd4ea1.gif)
![情态动词will 语义排歧 支持向量机 人工神经网络 特征提取_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-2/24/bf9f930c-68b9-407a-ad64-987b450bd4ea/bf9f930c-68b9-407a-ad64-987b450bd4ea2.gif)
![情态动词will 语义排歧 支持向量机 人工神经网络 特征提取_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-2/24/bf9f930c-68b9-407a-ad64-987b450bd4ea/bf9f930c-68b9-407a-ad64-987b450bd4ea3.gif)
![情态动词will 语义排歧 支持向量机 人工神经网络 特征提取_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-2/24/bf9f930c-68b9-407a-ad64-987b450bd4ea/bf9f930c-68b9-407a-ad64-987b450bd4ea4.gif)
![情态动词will 语义排歧 支持向量机 人工神经网络 特征提取_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-2/24/bf9f930c-68b9-407a-ad64-987b450bd4ea/bf9f930c-68b9-407a-ad64-987b450bd4ea5.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、情态动词will论文:基于支持向量机的英语情态动词Will语义排歧研究【中文摘要】语义排歧是指根据目标词出现的上下文语境自动识别其意义。语义排歧是机器翻译、信息检索、语音识别、文本分类以及人机交互等诸多领域中的关键环节,是自然语言处理领域的热点和难点。尽管语义排歧技术取得了很大发展,但目前的语义排歧研究对象还是主要集中在普通动词和名词的语义排岐上。情态表达说话人的态度和意见,主要由情态动词来实现。因此,正确识别情态动词的语义对理解和领会说话人的态度和意见十分重要。情态动词语义有三种不确定性:梯度,歧义和融合。这些不确定性使人们很难把握其准确意义。因此,建立一个有效的、准确性较高的情态动词语义排
2、歧模型变得至关重要。本研究基于120万字的语料库,从will的实际使用语境中提取八个语义特征和句法特征,并采用数据挖掘中的一种新方法支持向量机,建立了情态动词will的语义排歧模型。实验结果显示,由支持向量机方法建立的情态动词will的语义排歧模型的排歧精度达到了98.33%。这个结果,证实了采用支持向量机对情态动词will语义排歧的有效性,同时证明了从真实的语料库中提取的8个语言特征的有效性。为了验证支持向量机语义排歧效果的优越性,本文采用神经网络技术中的反向传播神经网络,径向基神经网络.【英文摘要】Word sense disambiguation is the task to ident
3、ify the intended meaning of an ambiguous word in a certain context. Due to its wide application in machine translation, information retrieval, speech recognition, text categorization, it has been one of the hot and tough issues in natural language processing. Although techniques of word sense disamb
4、iguation have advanced greatly, the research objects have mainly centered on the common nouns and verbs. Modality is concerned with the speakers opinion or attitude .【关键词】情态动词will 语义排歧 支持向量机 人工神经网络 特征提取【英文关键词】modal verb will word sense disambiguation Support Vector Machines artificial neural network
5、 feature selection【索购全文】联系Q1:138113721 Q2:139938848【目录】基于支持向量机的英语情态动词Will语义排歧研究摘要5-7Abstract7-8Abbreviations12-13List of Tables13-14List of Figures14-15Chapter 1 Introduction15-191.1 Background of the present study15-171.2 Objectives of the present study171.3 Outline of the thesis17-19Chapter 2 Lite
6、rature Review19-372.1 Studies on the word sense disambiguation19-252.1.1 Studies on the word sense disambiguation abroad19-222.1.2 Studies on the word sense disambiguation in China22-252.2 Studies on the application of support vector machines25-312.2.1 Study on the application of support vector mach
7、ines abroad26-292.2.2 Study on the application of support vector machines in China29-312.3 Studies on the English modality31-352.4 Space for the present study35-37Chapter 3 Theoretical Foundation and Methodology37-413.1 Theoretical foundation of the present study37-383.2 Research method and data col
8、lection38-393.3 Summary39-41Chapter 4 Semantic Categorization of the English Modal Verb Will41-464.1 Why is will41-424.2 Categorization of meanings of English modal verb will42-444.3 Summary44-46Chapter 5 The Building of the WSD Model of Will by SVM46-585.1 The working principle of support vector ma
9、chines46-485.2 Selection of training samples and test samples48-495.3 Construction of feature sets49-515.4 Vectorization of the linguistic features51-525.5 The building of WSD model by SVM52-575.5.1 Training and testing with default parameters52-545.5.2 Training and testing with optimal parameters54
10、-565.5.3 Model selection56-575.6 Summary57-58Chapter 6 Comparative Analysis of the Models of WSD Models by SVM and by ANN58-736.1 The working principle of artificial neural networks58-606.2 The building of the WSD model by BP, RBF and PNN60-656.3 Comparative analysis of the four WSD models of will65
11、-686.4 Analysis and discussion on the misclassified samples68-726.5 Summary72-73Chapter 7 Contributions of Different Linguistic Features to the WSD of Will73-887.1 The contributions of the semantic features to the WSD of will75-807.2 The contributions of syntactic features to WSD of will80-827.3 The contribution of each linguistic feature to the WSD of will82-847.4 Validation of the importance of linguistic features to the WSD of will84-867.5 Summary86-88Chapter 8 Conclusions88-91Reference
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班级经验分享会的开展计划
- 培养学生判断力与批判性思维计划
- 增强图书馆开放日活动效果计划
- 如何应对财务恐惧症计划
- 经理绩效目标规划计划
- 美术欣赏与文化传播课程大纲计划
- 幼儿心理健康关怀计划
- 2025年艺术表演场馆服务项目建议书
- 2025年高纯四氧化三锰项目合作计划书
- 2025年电子商务C2C项目合作计划书
- 大学有机化学(王小兰) 绪论
- 象数疗法好疗效
- A320系列飞行训练课程:电子飞行仪表系统概况
- 黄土地质灾害类型及其危害性评估
- 交际德语教程第二版A1Studio[21] 课后习题参考答案
- 气割、电气焊作业的应急救援预案
- 超级精美PPT模版美国经典ppt模板(通用珍藏版2)
- 施工现场应急处置方案
- 阴符咒术(基本知识--画符)
- 气动控制阀的定义分类及工作原理详解
- DZW中文说明书
评论
0/150
提交评论