




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、点击代数式求值方法运用已知条件,求代数式的值是数学学习的重要内容之一。它除了按常规代入求值法,还要根据题目的特点,灵活运用恰当的方法和技巧,才能达到预期的目的。下面举数例介绍常用的几种方法和技巧。一、常值代换求值法常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化简,求得代数式的值。例1 已知ab=1,求的值解 把ab=1代入,得 = = =1评注 将待求的代数式中的常数1,用a·b代入是解决该问题的技巧。而运用分式的基本性质及运用法则,对代入后所得的代数式进行化简是解决该问题的保证。二、运用“非负数的性质”求值法该法是指运用“若几个非负数的和为零,则每
2、一个非负数应为零”来确定代数式中的字母的值,从而达到求代数式的值的一种方法。例2 若实数a、b满足a2b2+a2+b2-4ab+1=0,求之值。解 a2b2+a2+b2-4ab+1=(a2b2-2ab+1)(a2-2ab+b2)=(ab-1)2+(a-b)2则有(ab-1)2+(a-b)2=0解得 当a=1,b=1时,=1+1=2当a=-1,b=-1时,=1+1=2 评注 根据已知条件提供的有价信息,对其进行恰当的分组分解,达到变形为几个非负数的和为零,这一新的“式结构”是解决本题的有效策略,解决本题要注意分类讨论的方法的运用。三、整体代入求值法整体代入法是将已条件不作任何变换变形,把它作为一
3、个整体,代入到经过变形的待求的代数式中去求值的一种方法。例3 若x2+x+1=0,试求x4+2003x2+2002x+2004的值。解 x4+2003x2+2002x+2004= x4-x+2003x2+2003x+2003+1=x(x-1)(x2+x+1)+2003(x2+x+1)+1又x2+x+1=0x4+2003x2+2002x+2004=1评注 x2+x+1=0 x不是实数,那么通过求出x的值,再求代数式x4+2003x2+2002x+2004之值,显然枉然无望。对求值的代数式进行适当的变形,将已知条件整体代入到求值的代数式中去,是解决本题的方法又是解决本题的技巧。四、因式分解求值法因
4、式分解法求代数式的值是指将已知条件和求值的代数式之一或全部进行因式分解,达到求出代数式的值的一种方法。例4 已知|a|+|b|=|ab|+1, 求a+b之值解 |a|+|b|=|ab|+1|a|·|b|-|a|-|b|+1=0(|a|-1)(|b|-1)=0|a|=1 |b|=1a=±1或b=±1.则当a=1,b=1时,a+b=2当a=1,b=-1时,a+b=0当a=-1,b=1时,a+b=0当a=-1,b=-1时,a+b=-2评注 运用该法一般有两种途径求值,一是将已知条件变形为一边为0,另一边能分解成几个因式的积的形式,运用“若A·B=0,则A=0或
5、B=0”的思想来解决问题。另一种途径是对待求的代数式进行因式分解,分解成含有已知条件的代数式,然后再将已知条件代入求值。五、运用倒数求值法倒数法是指将已知条件或待求的代数式作倒数变形,从而达到求出代数式的值的一种方法。例5 已知,求的值。解 由已知,得 所以,则=评注 采用此法要注意先对已知部分和求值的代数式进行化简变形,后再作选择。像本题先对待求的代数式进行化简得到结果为,根据这样一个“式结构”,再观察已知条件的“式结构”,显然想到,将已知条件采用倒数变形,用“化部分商”的方法,求出的值代入。六、分解质因数求值法此法是将有关信息进行分解重组,运用质因数的特有的性质,求出代数式中所含字母的值,
6、从而达到求出代数式的值的一种方法。例6 已知m、n为正整数,且12+22+92+92+m2=n2,求2m-n的值。解 n2=m2+167(n-m)(n+m)=1×167又m、n为正整数,167是质数 当m=83,n=84时,2m-n=2×83-84=82评注 m、n为正整数,167是质数,是由“(n-m)(n+m)=1×167得到n-m=1且m+n=167”这一结论的重要保证,离开了这一条件,则m、n之值难以确定,那么代数式2m-n的值就无法求出。七、比值求值法比值求值法是指已知条件中等式的个数少于所含字母的个数时,通过方程(组)将已知条件中所含字母的比值求出,从
7、而求出代数式的值。例7 设a+2b-5c=0,2a-3b+4c=0(c0),求的值。解 把已知等式看作关于a,b的方程组c0 a:b:c=1:2:1设a=k, 则b=2k , c=k.=-评注 该法适合于求值的分式中的分子和分母的都含有相同的次数(齐次)的多项式。否则即是将求值的代数式中的字母的比值求出来,也不能达到求出代数式的值的目的。八、用字母表示数求值法字母表示 数求代数式就是将已知条件或求值的代数式中某些较复杂的部分用字母来表示,再通过计算或化简,从而求出代数式的值。例8 设a= -求2004a-1之值解 设A=则a= =A(1+A)+=2004a-1=2004×-1=0评注
8、 我们用字母A来代替已知条件中的这种思想称之为“用字母表示数”的思想,它是一种重要的数学思想方法,是我们学习好数学的灵魂。对于遇到既复杂又重复出现的较大块模(指数或式),可考虑使用该种方法来解决问题。九、“”求值法“”法是指将已知条件中的某一参数作为变量,其余参数作为常量,构出一个一元二次方程,由二次方程必有实根得出0,从而求出代数式的值。例9 设a、b、c、d都是不为零的实数,且满足(a2+b2)d2+b2+c2=2(a+c)bd,求b2-ac的值。解 将已知等式整理成关于d的二次方程(a2+b2)d2-2b(a+c)d+(b2+c2)=0=4b2(a+c)2-4(a2+b2) (b2+c2
9、) =-4(b2-ac)2d是实数,0即-4(b2-ac)20 则b2-ac=0 评析 解决该题的绝妙之处是通过构造出现-4(b2-ac)20这样一个数学式子,运用该法一定要出现“若一个非正数大于0,则这个非正数必为零”这样一个结论,否则,不能运用该法确定有关参数的数值。十、运用韦达定理逆定理求值法运用韦达定理求代数式的值是将已知条件中式结构转化为两数之和,两数积的形式,根据它构造出一元二次方程,求出代数式的值。例10 已知a、b、c为实数且a+b=5 c2=ab+b-9,求a+b+c之值。解 a+b=5 c2=ab+b-9则b,a+1为t2-6t+c2+9=0两根a,b为实数 b,a+1为实
10、数,则t2-6t+c2+9=0有实根=36-4(c2+9)= -4c20 c=0则a+b+c=5+0=5 评注 运用该法一定要注意将已知条件转化成两数之积及二数之和这一形式,从而达到构造一元二次方程的目的。思考:若a2-7a-5=0,b2-7b-5=0,求之值,思考如何构造。十一、配偶求值法配偶法是指将一个不是轮换对称式的式子通过配对变形,将之变换成轮换对称式,从而达到求值的目的的一种方法。例11 已知x2-x-1=0的两根为a、b,求之值。 解 根据题意有 设y=,则有y+,即y2+3y+1=0, y=评注 本题若将x的值通过解一元二次方程求出来,再求的值,实在较复杂麻烦。但要求的代数式是关
11、于两根的非轮换对称式的值,因为根据根与系数的关系,只能求出关于两根的轮换对称式的值,因此,想到必须将两根的“非轮换对称式”通过配偶成“轮换对称式”来解决问题。显然采用这种方法有相当大的技巧性,我们在解题过程中要注意体会积累,内化为数学素养。 十二、数形结合求值法 数形结合求值是指根据题目中的数或形的意义,利用“式结构”和“形结构”的特征及相互转化,达到求值的一种方法。 例12 如图,数轴上表示1、的对应点分别为A、B,点B关于点A的对称点为C,设点C所表示的数为x,求x+的值。 C A B -1 0 x 1 解 根据题意,得AB=-1,AC=AB AC=-1 则x=1-(-1)=2- 故x+=2-+评注 运用数形结合的思想求代数式的值,关键的是要根据“图形”或“代数式”所提供的信息,揭示“数”与“形”之间的规律,架设“数”与“形”之间的桥梁,谋求“数”与“形”的辩证统一。十三、赋值求值法赋值求值法是指代数式中的字母的取值由答题者自己确定,从而,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年食品安全事故调查流程及试题及答案
- 语文考试学年试题2025年及答案
- 宫颈癌考试题及答案
- 二手车评估师的职业伦理探讨试题及答案
- 美容师考试文化素养题目解析及答案
- 2024年美容师考试中的案例研究与公务员省考试题及答案
- 宠物特殊饮食需求案例分析试题及答案
- 2024年汽车维修工考试的综合体检
- 中职中专英语试题及答案
- 成语故事乐不思蜀
- 2025年开封大学单招职业倾向性测试题库汇编
- 生物化学习题集(护理)
- 贵州省县中新学校计划项目2025届高三下学期开学联考语文试题及答案
- 2025年化妆品包装标签法律要求培训
- 2023-2024年护师类之护师初级基础试题库和答案要点
- 中间人协议书范本(2025年)
- 演员经纪合同法律风险-洞察分析
- 2024-2030年全球及中国石榴花提取物行业发展动态及供需前景预测报告
- 综合实践项目 制作细胞模型 教学实录-2024-2025学年人教版生物七年级上册
- 对口高考模拟卷(1)-【中职专用】2025年湖南省普通高等学校对口招生高考模拟测试(原卷版)
- 九下 化学 科学 第七单元 跨学科实践活动:海洋资源的综合利用与制盐
评论
0/150
提交评论