HIT电池技术的研究_第1页
HIT电池技术的研究_第2页
HIT电池技术的研究_第3页
HIT电池技术的研究_第4页
HIT电池技术的研究_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、摘要:阐述了异质结(HIT)太阳能电池的结构与特征,并从异质结能带结构的优化、非晶硅层的制备方法、背面场(BSF)的研究、衬底材料的选取以及发射极材料的革新等方面综述了HIT太阳能电池的技术发展状况。概述了HIT电池的产业化应用研究现状,并展望了HIT太阳能电池的未来发展趋势。关键词:HIT;太阳能电池;异质结结构0引言能源危机和环境污染问题促进了清洁能源的广泛研究与应用开发。太阳能光伏发电是种利用光伏效应将太阳光辐射能直接转换为电能的新型发电技术,凶具有资源充足、清洁、安全、寿命长等优点,被认为是最有前途的可再生能源技术之一,已成为可再生能源技术中发展最快、最具活力的研究领域。日前国际光伏市

2、场上的太阳能电池主要有晶体硅(包括单晶硅、多晶硅)、非晶单晶异质结(HIT)、非晶硅薄膜、碲化镉(CdTe)薄膜及铜铟硒(CIS)薄膜太阳电池等。其中商品化的晶体硅太阳能电池仍占主流,其光电转化效率已达25,但受到材料纯度和制备T艺限制,很难再提高其转化效率或降低成本;而非晶硅太阳能电池虽然能大面积生产,造价又低廉,但其转换效率仍比较低,并且稳定性差。为了降低成本同时保持高转换效率,近年来HIT电池得到了迅速的发展。这种异质结结构的电池是综合两者优点充分发挥各自长处的最佳设计。本文介绍了HIT电池的结构与特点,综述了HIT电池的发展现状,并对HIT电池的未来进行了展望。1HIT太阳能电池的结构

3、与特点1.1HIT太阳能电池的结构图1为HIT、太阳能电池的基本构造,其特征是以光照射侧的p-i型a-Si:H膜(膜厚5lOnm)和背面侧的i-n型a_Si:H膜(膜厚510nm)夹住晶体硅片,在两侧的顶层形成透明的电极和集电极,构成具有对称结构的HIT太阳能电池。1.2HIT太阳能电池的特点(1)低温工艺HIT电池结合了薄膜太阳能电池低温(<250)制造的优点,从而避免采用传统的高温(>900)扩散工艺来获得p-n结。这种技术不仅节约了能源,而且低温环境使得a_Si:H基薄膜掺杂、禁带宽度和厚度等可以较精确控制,工艺上也易于优化器件特性;低温沉积过程中,单品硅片弯曲变形小,因而其

4、厚度可采用本底光吸收材料所要求的最低值(约80m);同时低温过程消除了硅衬底在高温处理中的性能退化,从而允许采用"低品质"的晶体硅甚至多晶硅来作衬底。(2)高效率HIT电池独有的带本征薄层的异质结结构,在p_n结成结的同时完成r单晶硅的表面钝化,大大降低了表面、界面漏电流,提高了电池效率。目前HIT电池的实验室效率已达到23,市售200W组件的电池效率达到19.5。(3)高稳定性HIT电池的光照稳定性好,理沧研究表明非品硅薄膜晶态硅异质结中的非晶硅薄膜没有发现Staebler-Wronski效应,从而不会出现类似非晶硅太阳能电池转换效率因光照而衰退的现象;HIT电池的温度稳

5、定性好,与单晶硅电池一0.5的温度系数相比,HIT电池的温度系数可达到一0.25,使得电池即使在光照升温情况下仍有好的输出'"。(4)低成本HIT电池的厚度薄,可以节省硅材料;低温工艺可以减少能量的消耗,并且允许采用廉价衬底;高效率使得在相同输出功率的条件下可以减少电池的面积,从而有效降低了电池的成本。2HIT太阳能电池的发展现状2.1HIT太阳能电池的技术发展状况1990年,日本Sanyo公司最早开始研究异质结太阳能电池。1992年,Tanaka等就创下p-a-Si:Hi-a-Si:Hn_c-Si结构太阳能电池光电转换效率18.1的纪录,并将这种带有本征薄层的结构称之为HI

6、T结构。此后,中国、美国、德国、法国、意大利、荷兰等同家也相继投入到HIT太阳能电池的研究中(表1为各国研究的HIT电池的种类、制备工艺以及电池所能达到的转换效率情况)。为进一步提高电池的效率,其研究主要侧重于以下几个方面。(1)异质结能带结构的优化H1T电池与传统电池最大的区别就是非晶硅与晶体硅构成的异质结结构。通过设计异质结界面的势垒高度获得合适的能带结构,以提高电池的转换效率。以Sanyo公司HIT电池为例,在(p)a-Si(i)a-Si(n)c-Si的异质结结构中,非晶硅与单晶硅界面价带位错要小,以便收集空穴,同时导带的位错要尽可能大,以阻I七电子的通过。异质结势垒高度的设计主要是通过

7、控制非晶硅薄膜的沉积参数来实现的。(2)非晶硅层的制备方法HIT电池的非晶硅层通常用等离子增强化学气相沉积(PECVD)技术进行制备。近年来,中科院研究生院张群芳等以及美国国家可再生能源实验室(NERL)THWang等口朝采用热丝增强化学气相沉积(HWCVD)技术制备了P型衬底的HIT电池。与PECVD相比,HWCVD产生的等离子能量较低,能有效避免离子的轰击,同时可产生用于预处理硅片表面的低能原子氢,制备过程中的粉尘较少,不易使a-Si:H薄层短路。此外,美国纽约州立大学的BJagannathan等还用直流磁控溅射技术制备了P型HIT电池,在0.3cm2的面积上得到了550mV的开路电压和3

8、0mAcm2的短路电流。(3)背面场(BSF)的研究背面场能改善背面复合速率和背表面反射,从而提高开路电压、增大短路电流。制备背面场的传统方法有销合金法、硼扩散法、磷扩散法等,但这些工艺都需要高温过程,只能先制备背面场再沉积非晶硅簿膜。与HIT电池低温工艺兼容的制备工艺主要有在单晶硅背面沉积重掺杂非晶硅薄膜形成背面场。Toru Sawada等用PECVD法在n型衬底上制备出HIT结构(in a-Si)的背面场。该背面场利用了异质结的特性,不需要重掺杂就能形成。结果显示,HIT结构背面场达到了比热氧钝化更好的表面钝化效果。YVes-chetti等u80还用光刻、硼离子注入实现了局部背面场(Loc

9、al BSF),与全面积(Full)铝合金背面场相比,开路电压大大提高,达到了676mV,为P型HIT电池开路电压的最高值。HDGoldbach等用P"c-Si制作了P型HIT电池的背面场。因为c-Si比a-Si有更高的掺杂效率,所以能实现高浓度的掺杂,从而降低激活能,形成性能优良的背面场,提高电池转换效率。数值模拟结果表明,在n型衬底HIT电池的背面增加一层重掺杂的n+层可以起到背面场的作用,使电池的效率提高到24.35。(4)衬底材料的选取'衬底的类型不同,电池的转换效率也不同。Tucci M等研究发现,n型衬底的HIT电池由于异质结能带结构方而的优势,其转换效率略高于P

10、型衬底的太辟j能电池,但P型衬底太阳能电池对界面的要求较低,因此易于制备。THWang等分别用P型区熔(FZ)硅和直拉(CZ)硅作衬底制成了HIT电池,结果发现衬底为FZ硅太阳电池的效率高于CZ硅。美国国家可雨生能源实验室的Wang Qi等用HWCVD法在Fz衬底上制备的HIT太阳能电池的效率已达到19.1。但是FZ硅的价格高于CZ硅,因此应从效率和成本两方新综合考虑,选择合适的衬底。另外,为了减小电池对入射光的反射牢,绒面衬底也被应用到HIT电池中,并且取得了租好的减反射效果。(5)发射极材料的革新为了减少非晶硅层对入射光的吸收,可采用宽带隙材料如微晶硅(c-Si)、纳晶硅(nc-Si)等作

11、为发射极,提高光的透过率。C Summontc等用RF-PECVD技术,通过高氢气稀释的气源,在P型衬底上制备了n型c-Si发射极,结果显示,与a-Si发射极相比,HIT电池的短路电流和转换效率有明显提高。中科院半导体所许颖等也用RF-PECVD在p型衬底上制备出了n型nc-Si发射极。除PECVD法以外,中科院研究生院的张群芳等还用HWCVD法制备c-Si发射极。另外,JDanmon-Lacoste等用PECVD法在形成多态硅(pm-Si)的条件下制各了HIT电池的本征层,测试结果显示pm-Si的载流于有效寿命比a-Si高出1个数量级。2.2Hrr太阳能电池的产业化状况HIT电池模块自199

12、7年投人市场吼来发展极为迅速。图2为2004年各类太阳能电池所占市场份额,由图2可知,短短数年问HIT电池已占据世界光伏市场5的市场份额。在研究及其大规模产业化的过程中,Sanyo做出了重要贡献。自1991年HIT电池的研究工作取得突破性进展,在1cm2面积上制备出转换效率为20.0的HIT电池以来,Sanyo公司在工业化生产中推出了名为HIT Power21的电池组件,转换效率高达17.39%,它由96片HIT电池组成输出功率为180W。同时,,Sanyo公司还推出了能替代屋顶瓦片的高性价比太阳电池模块(HIT power roof)。双面模块(HIT power double)也随后面世,

13、特别适合安装在地面以及围墙等设施上 。2003年4月,Sanyo公司推出了输出功率为200W的HIT电池模块模块的电池转换效率达到19.5,模块效率为17,并且温度特性有大幅提高,年发电量比传统太阳电池多出43。2006年,HIT电池的最高转换效率达到21.8%,270W的HIT电池模块首先在欧洲上市,工程中太阳能电池模块的用量可再减少约25%。2009年5月,Sanyo公司又将HIT池的转化效率提高到23的世界纪录。同年9月,该公司又以厚度仅为此前12左右的98m的HIT太阳能电池实现了22.8的电池单元转化效率(开路电压(Voc)为0.743,短路电流(Isc)为38.8mAcm2填充因子

14、(FF)为79.1电池单元面积为100.3cm2)。虽然厚度减半,但电弛单元转换效率却只降低了0.2。由于减少了占成本12的硅的使用量从而为HIT电池的低成本化开辟了道路。同时Sanyo计划近期将此技术应用于量产,并在FY2013赢得日本光伏市场的最大份额,从而显示出HIT电池具有极大的发展潜力。德国在软件模拟计算中取得了较大的进步使转化效牢提高到了19.8%;美国研究的HIT电池效率也达到了19.1。但是由于核心工艺技术和关键设备技术产业化生产工艺还不是很成熟产业化电池效率不是很高,他们将在今后的研究中大力改进工艺,实现大规模产业化生产。3结束语HIT电池虽然发展很迅速,但是仍然存在许多问题。出于生产过程中的每一步工艺要求都很严格,所以在保证高效的情况下,大规模的量产还需要进一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论