




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、用SPSS Mixed Model 定义多水平模型北京师范大学心理学院刘红云数据结构 一个个体一行记录,多个变量,含有一个描述个体编号的变量 Multiple Variable Data Structure (MV) http:/ 一次观测一行记录,含有一个个体编号和测量次数或时间的变量 Multiple Record Data Structure (MR) /stat/examples/alda/ Multiple Variable Data StructureMultiple Record Data Structure 具有一般嵌套结构特点的多层
2、数据学生嵌套于学校句法(Syntax) GET FILE=C:HLM_EXAMPLEEX1.SAV. MIXED MATHACH BY SECTOR WITH MEANSES CSES /METHOD = REML /PRINT = SOLUTION TESTCOV /FIXED = MEANSES SECTOR CSES MEANSES*CSES SECTORCSES SSTYPE(3) /RANDOM = INTERCEPT CSES SUBJECT(SCHOOL) COVTYPE(UN).句法(Syntax)解释1 GET FILE=C:HLM_EXAMPLEEX1.SAV.2 MIXE
3、D MATHACH BY SECTOR WITH MEANSES CSES3 /METHOD = REML4 /PRINT = SOLUTION TESTCOV5 /FIXED = MEANSES SECTOR CSES MEANSES*CSES SECTORCSES SSTYPE(3)6 /RANDOM = INTERCEPT CSES SUBJECT(SCHOOL) COVTYPE(UN). 1 打开数据文件; 2 因变量为MATHACH,自变量为SECTOR , MEANSES CSES,分类自变量写在BY的后面,连续自变量写在WITH的后面;3 用限制性极大似然估计法,在Mixed M
4、odel中估计方法有REML和ML两种,REML是缺省的设置;4SOLUTION定义打印输出固定部分参数估计和检验结果,TESTCOV要求打印输出随机部分协方差矩阵的估计和检验结果;5FIXED后面定义模型中的预测变量;6Random后的变量用来定义允许第二层有差异的随机变量,SUBJECT后的SCHOOL为更高的组变量, COVTYPE用来定义协方差矩阵的类型MIXED MODEL应用举例:模型1 无条件模型 GET FILE=C:HLM_EXAMPLEEX1.SAV. MIXED MATHACH /METHOD = REML /PRINT = SOLUTION TESTCOV /FIXED
5、 = |SSTYPE(3) /RANDOM = INTERCEPT | SUBJECT(SCHOOL) COVTYPE(UN).应用举例:模型1无条件模型参数估计结果Estimates of Fixed EffectsEstimates of Fixed Effectsa a12.63697.2443936156.64751.707.00012.154241913.1197058ParameterInterceptEstimateStd. ErrordftSig.Lower BoundUpper Bound95% Confidence IntervalDependent Variable: M
6、ATHACH.a. E Es st ti imm a at te es s o of f C Co ov va ar ri ia an nc ce e P Pa ar ra amm e et te er rs sa a39.14832 .660644759.258.000 37.8746616 40.46481338.61402481.07880367.985.0006.7391217 11.0105479ParameterResidualVarianceIntercept subject= SCHOOLEstimate Std. ErrorWald ZSig.Lower BoundUpper
7、 Bound95% Confidence IntervalDependent Variable: MATHACH.a. 应用举例:模型2条件模型(水平2预测变量) MIXED MATHACH with meanses /METHOD = REML /PRINT = SOLUTION TESTCOV /FIXED = MEANSES|SSTYPE(3) /RANDOM = INTERCEPT | SUBJECT(SCHOOL) COVTYPE(UN).应用举例:模型2条件模型(水平2预测变量)结果E Es st ti imma at te es s o of f F Fi ix xe ed d
8、E Ef ff fe ec ct ts sa a12.64944.1492801153.74384.736.00012.354530312.94434045.8635385.3614580153.40716.222.0005.14946066.5776163ParameterInterceptMEANSESEstimateStd. ErrordftSig.Lower BoundUpper Bound95% Confidence IntervalDependent Variable: MATHACH.a. Estimates of Covariance ParametersEstimates o
9、f Covariance Parametersa a39.15708.660801659.257.00037.883119540.47388642.6387080.40433866.526.0001.95415363.5630668ParameterResidualVarianceIntercept subject= SCHOOLEstimateStd. ErrorWald ZSig.Lower BoundUpper Bound95% Confidence IntervalDependent Variable: MATHACH.a. 应用举例:模型3条件模型(水平1预测变量中心化) MIXED
10、 MATHACH with cses /METHOD = REML /PRINT = SOLUTION TESTCOV /FIXED = CSES|SSTYPE(3) /RANDOM = INTERCEPT cses| SUBJECT(SCHOOL) COVTYPE(UN).应用举例:模型3条件模型(水平1预测变量中心化)结果Estimates of Fixed EffectsEstimates of Fixed Effectsa a12.64934.2445133156.75151.733.00012.166372713.13230482.1931921.1282588155.21817.1
11、00.0001.93983412.4465501ParameterInterceptCSESEstimateStd. ErrordftSig.Lower BoundUpper Bound95% Confidence IntervalDependent Variable: MATHACH.a. E Es st ti imma at te es s o of f C Co ov va ar ri ia an nc ce e P Pa ar ra amme et te er rs sa a36.70020.625744058.650.00035.494026937.94735498.68164341
12、.07962598.041.0006.803757111.0778399.0507473.4063926.125.901-.7457676.8472623.6939945.28078582.472.013.31402571.5337226ParameterResidualUN (1,1)UN (2,1)UN (2,2)Intercept + CSESsubject = SCHOOLEstimateStd. ErrorWald ZSig.Lower BoundUpper Bound95% Confidence IntervalDependent Variable: MATHACH.a. 应用举例
13、:模型4同时含有水平1和水平2的预测变量 MIXED MATHACH BY SECTOR WITH MEANSES CSES /METHOD = REML /PRINT = SOLUTION TESTCOV /FIXED = MEANSES SECTOR CSES MEANSES*CSES SECTOR*CSES |SSTYPE(3) /RANDOM = INTERCEPT CSES |SUBJECT(SCHOOL) COVTYPE(UN).应用举例:模型4同时含有水平1和水平2的预测变量结果Estimates of Fixed EffectsEstimates of Fixed Effect
14、sb b13.33026.2201540141.62760.550.00012.895044413.76546985.3391182.3692988150.97014.457.0004.60945696.0687796-1.21667.3063854149.600-3.971.000-1.8220739-.61127060a0.1.2961798.1729351147.6717.495.000.95443261.63792691.0388706.2989010160.5623.476.001.44858621.62915501.6425829.2397914143.3536.850.0001.
15、16859902.11656670a0.ParameterInterceptMEANSESSECTOR=0SECTOR=1CSESMEANSES * CSESCSES(SECTOR=0)CSES(SECTOR=1)EstimateStd. ErrordftSig.Lower BoundUpper Bound95% Confidence IntervalThis parameter is set to zero because it is redundant.a. Dependent Variable: MATHACH.b. Estimates of Covariance ParametersE
16、stimates of Covariance Parametersa a36.72113.626132758.648.00035.514210637.96906272.3818588.37174836.407.0001.75414243.2342021.1926034.2045243.942.346-.2082569.5934637.1013798.2138116.474.635.00162466.3262882ParameterResidualUN (1,1)UN (2,1)UN (2,2)Intercept + CSESsubject = SCHOOLEstimateStd. ErrorWald ZSig.Lower BoundUpper Bound95% Confidence Inte
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家庭存钱协议书范本
- 设备共有共用协议书
- 着火林木赔偿协议书
- 整体收购企业协议书
- 上海送菜协议书范本
- 商标转让简易协议书
- 土地划分协议书双方
- 平台软件购买协议书
- 景区包车协议书模板
- 项目住宿管理协议书
- 2025年AR眼镜行业市场规模及主要企业市占率分析报告
- 日常小学生防性侵安全教育课件
- 浙江首考2025年1月普通高等学校招生全国统一考试 历史 含解析
- 市政城市环境管理
- 2025办公楼租赁合同书范本
- 2025中国煤炭地质总局招聘784人笔试参考题库附带答案详解
- 2025年高考英语二轮复习测试04 从句综合+语法填空(测试)(原卷版)
- 春季肝胆排毒课件
- 第12课 辽宋夏金元时期经济的繁荣 教案2024-2025学年七年级历史下册新课标
- 《安全生产治本攻坚三年行动方案》培训
- 警车安全驾驶课件大全
评论
0/150
提交评论