开关电源课程设计78420_第1页
开关电源课程设计78420_第2页
开关电源课程设计78420_第3页
开关电源课程设计78420_第4页
开关电源课程设计78420_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电气与电子信息工程学院电力电子装置设计与制作课程设计报告课设名称:开关直流升压电源(BOOST)设计专业名称: 电气工程及其自动化 班 级: 学号: 姓 名: 指导教师: 课设时间: 课设地点: 电气与电子信息工程学院电力电子装置设计与制作课程设计任务书 学生姓名: 专业班级: 指导教师: 工作部门: 1、 课程设计题目:开关直流升压电源(BOOST)设计2、 课程设计内容根据题目选择合适的输入输出电压进行电路设计,在Protel或OrCAD软件上进行原理图绘制;满足设计要求后,再进行硬件制作和调试。如实验结果不满足要求,则修改设计,直到满足要求为止。题目:开关直流升压电源(BOOST)设计主

2、要技术指标:1)输入交流电压220V(可省略此环节)。2)输入直流电压在11-12V之间。3)输出直流电压17V,输出电压纹波小于2%。4)输出电流1A。 5)采用脉宽调制PWM电路控制。目录摘要·································

3、3;································5第一章 方案选择和方案论证···············&#

4、183;·····························71.系统方案设计···················

5、;·································72.方案论证···············

6、3;········································7第二章 主电路计算和器件选择·······&

7、#183;··································81.设计要求··············

8、··········································82.选择开关管的频率······&

9、#183;·········································83.占空比计算·······

10、;···············································84.电感的计算(按D=35.29

11、%)··········································85.电容的计算······&#

12、183;···············································86.电感峰值电流的计算(按

13、D=35.29%)··································87.开关管的选择·············

14、·······································88.开关损耗的计算(按D=35.29%)·······

15、83;······························99.二极管的选择··················

16、··································910.电阻的计算··············

17、83;······································9第三章 系统功能及原理·········

18、83;······································101.系统功能··········&

19、#183;············································102. boost电路工作原理··

20、83;··········································10第四章 各模块的功能和原理·····

21、·······································131. TL494工作原理········

22、3;········································13 2. 开关频率的计算·······

23、83;········································13 第五章 MATLAB仿真·······

24、·············································151.仿真原理图···

25、83;·················································152

26、.仿真结果·················································&

27、#183;·····153.仿真结果分析··········································

28、83;········16第六章 实验结果以及分析·······································&

29、#183;······171.实验结果··········································

30、;·············172.结果分析···································

31、83;···················17第七章 硬件电路·····························

32、;·························181.焊接电路主电路图·······················

33、;························182.焊接电路控制电路图·······················

34、3;·····················183.焊接实物图···························&

35、#183;·························19第八章 总结·······················

36、;···································20参考文献··············

37、;···············································20摘要提高转换器(升压转换器)是

38、一个DC-to-DC电源转换器的输出电压大于输入电压。它是一个类的开关电源(smp)至少含有两个半导体(二极管和晶体管)和至少一个储能元件,电容,电感器,或两者的组合。过滤器由电容器(有时结合电感)通常添加到转换器的输出,以减少输出电压纹波。提高转换器的基本原理。开关通常是一个MOSFET、IGBT或者是机器。概述电压的提高转换器可以来自任何合适的直流源,如电池、太阳能电池板、整流器和直流发电机。这一过程变化一个直流电压不同的直流电压称为直流直流转换。提高转换器是一个直流对直流转换器的输出电压大于源电压。提高转炉有时被称为一个升压转换器,因为它“步骤”源电压。自(P=VI)必须节约用电,输出电

39、流低于源电流。历史为了效率高,smp开关必须打开或关闭快速和较低的损失。的出现,一个商业半导体开关在1950年代代表一个重要的里程碑,让smp如boost变换器成为可能。直流对直流转换器主要是在1960年代早期,当半导体开关已经变得可用。航空航天工业需要小,重量轻,高效的电力转换器导致了转换器的快速发展。切换系统如smp设计挑战,因为他们的模型依赖于一个开关是否打开或关闭。r·d·麦德布鲁克从加州理工学院在1977年出版的今天使用的模型直流对直流转换器。麦德布鲁克平均每个开关状态的电路配置状态空间平均技术。这简化了两个系统。新模型导致深刻的设计方程,帮助smp的增长。关键词

40、:斩波电路、BOOST电路A boost converter (step-up converter) is a DC-to-DC power converter with an output voltage greater than its input voltage. It is a class of switched-mode power supply (SMPS) containing at least two semiconductors (a diode and a transistor) and at least one energy storage element, a capa

41、citor, inductor, or the two in combination. Filters made of capacitors (sometimes in combination with inductors) are normally added to the output of the converter to reduce output voltage ripple.The basic schematic of a boost converter. The switch is typically a MOSFET, IGBT, or BJT.OverviewPower fo

42、r the boost converter can come from any suitable DC sources, such as batteries, solar panels, rectifiers and DC generators. A process that changes one DC voltage to a different DC voltage is called DC to DC conversion. A boost converter is a DC to DC converter with an output voltage greater than the

43、 source voltage. A boost converter is sometimes called a step-up converter since it “steps up” the source voltage. Since power () must be conserved, the output current is lower than the source current.HistoryFor high efficiency, the SMPS switch must turn on and off quickly and have low losses. The a

44、dvent of a commercial semiconductor switch in the 1950s represented a major milestone that made SMPSs such as the boost converter possible. The major DC to DC converters were developed in the early 1960s when semiconductor switches had become available. The aerospace industrys need for small, lightw

45、eight, and efficient power converters led to the converters rapid development.Switched systems such as SMPS are a challenge to design since their models depend on whether a switch is opened or closed. R. D. Middlebrook from Caltech in 1977 published the models for DC to DC converters used today. Mid

46、dlebrook averaged the circuit configurations for each switch state in a technique called state-space averaging. This simplification reduced two systems into one. The new model led to insightful design equations which helped the growth of SMPS.第一章 方案选择和方案论证1.系统方案设计 本系统采用闭环控制需要对一直流电源进行直流斩波,通过控制开关管的导通时

47、间,来控制最终输出的电压。整个系统包括BOOST主电路、闭环调节模块、电压反馈模块。系统方框图如图1所示:图1 系统方框图2.方案论证 闭环控制系统输出电压由给定电压决定,当给定电压与反馈电压不相等时积分电容就不断地冲放电改变电压调节器的输出从而改变可输出的PWM波的占空比进而改变输出电压的大小,方案可行。第二章 主电路计算和器件选择1.设计要求1)输入交流电压220V(可省略此环节)。2)输入直流电压在11-12V之间。3)输出直流电压17V,输出电压相对变化量小于2%。4)输出电流1A。5)采用脉宽调制PWM电路控制。2.选择开关管的频率本设计选择20KHz的开关管3.占空比计算 (3-1

48、)得D=29.41%-35.29%4.电感的计算(按D=35.29%) (3-2)取5.电容的计算 (3-3)取6.电感峰值电流的计算(按D=35.29%) (3-4)7.开关管的选择Mosfet开关损耗小,开关速度快,所以适用于高频切换的场合;IGBT导通压降低,耐压高,所以适用于高压大功率场合。一般而言,IGBT的正压驱动在15V左右,而Mosfet 建议在1012V左右。所以从功耗的角度来说,选择Mosfet。Mosfet的型号为IFR540N, IFR540N的极限电压为100V,极限电流为27A,功率为120W,导通电阻为,满足设计条件。8.开关损耗的计算(按D=35.29%) (3

49、-5) (3-6)9.二极管的选择选择FR602, FR602的最大反向电压为100V,最大正向电流为6A,满足条件。10.电阻的计算 (3-7)第三章 系统功能及原理1.系统功能实现输入为1112V,输出升高到为17V,本系统采用闭环控制通过给定电压来决定输出电压。给定信号电压调节器PWM驱动电路Boost电路输出电压反馈信号-图 3-1 系统框图给定信号决定输出,反馈信号反馈信息,当给定不等于反馈时电流调节器的积分电容就开始充放电来改变输出电压的大小从而改变PWM波发生电路产生的PWM波的占空比,驱动电路驱动mosfet,boost电路实现升压。2. boost电路工作原理boost升压电

50、路是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一: 图3-2 boost电路原理图假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程 当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢

51、的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。第四章 各模块的功能和原理1. TL494工作原理 TL494的说明:TL494是 一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论