版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、抛物线专题复习知识点梳理:抛物线xyOlFxyOlFlFxyOxyOlF定义平面内与一个定点和一条定直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线。=点M到直线的距离范围对称性关于轴对称关于轴对称焦点(,0)(,0)(0,)(0,)焦点在对称轴上顶点离心率=1准线方程准线与焦点位于顶点两侧且到顶点的距离相等。顶点到准线的距离焦点到准线的距离焦半径焦 点弦 长焦点弦的几条性质oxFy以为直径的圆必与准线相切若的倾斜角为,则若的倾斜角为,则 切线方程一直线与抛物线的位置关系直线,抛物线,消y得:(1)当k=0时,直线与抛物线的对称轴平行,有一个交点;(2)当k0时,
2、0,直线与抛物线相交,两个不同交点; =0, 直线与抛物线相切,一个切点; 0,直线与抛物线相离,无公共点。(3) 若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定)二关于直线与抛物线的位置关系问题常用处理方法直线: 抛物线,联立方程法: 设交点坐标为,,则有,以及,还可进一步求出, 在涉及弦长,中点,对称,面积等问题时,常用此法,比如相交弦AB的弦长 或 抛物线练习1、已知点P在抛物线y2 = 4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为 2、已知点P是抛物线上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小
3、值为 3、直线与抛物线交于两点,过两点向抛物线的准线作垂线,垂足分别为,则梯形的面积为 4、设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为 5、抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,垂足为,则的面积是 6、已知抛物线的焦点为,准线与轴的交点为,点在上且,则的面积为 7、已知双曲线,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为 8、在平面直角坐标系中,有一定点,若线段的垂直平分线过抛物线则该抛物线的方程是 。9、在平面直角坐标系中,已知抛物线关于轴对称,顶点在原点,且过点P(2,4),则该抛物线的方程是 10、抛物线上的点到
4、直线距离的最小值是 11、已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是 12、已知点,是抛物线上的两个动点,是坐标原点,向量,满足.设圆的方程为。(1) 证明线段是圆的直径;(2)当圆C的圆心到直线x-2y=0的距离的最小值为时,求p的值。解: (1)证明: ,整理得: ,(1)以线段AB为直径的圆的方程为,展开并将(1)代入得:,故线段是圆的直径(2)解: 设圆C的圆心为C(x,y),则圆心C到直线x-2y=0的距离为d,则,又因,当时,d有最小值,由题设得,.13、已知正三角形的三个顶点都在抛物线上,其中为坐标
5、原点,设圆是的内接圆(点为圆心)(1)求圆的方程;(2)设圆的方程为,过圆上任意一点分别作圆的两条切线,切点为,求的最大值和最小值(1)解:设两点坐标分别为,由题设知又因为,可得即由,可知,故两点关于轴对称,所以圆心在轴上设点的坐标为,则点坐标为,于是有,解得,所以圆的方程为 (2)解:设,则 在中,由圆的几何性质得,Oyx1lF所以,由此可得则的最大值为,最小值为14、如图,已知点,直线,为平面上的动点,过作直线的垂线,垂足为点,且(1)求动点的轨迹的方程;(2)过点的直线交轨迹于两点,交直线于点,已知,求的值;解:(1)设点,则,由得:PBQMFOAxy,化简得(2)设直线的方程为设,又,联立方程组,消去得:,故由,得:,整理得:,山水是一部书,枝枝叶叶的文字间,声声鸟鸣是抑扬顿挫的标点,在茂密纵深间,一条曲径,是整部书最芬芳的禅意。春风翻一页,桃花面,杏花眼
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年广告宣传印刷品订购协议样本
- 2024年购销协议印花税速查指南
- 城市中央公园绿化改造项目协议模板
- 2024年度货物运输险协议规范文本
- 2024年适用商业担保借款协议样式
- 数智驱动的研究生教育治理体系重构框架
- 国家教育战略与育强国建设的目标
- 2024年消防系统增补协议模板
- 2024年区域独家食品销售代理协议
- 公司工期合同范本
- 大学生辩论赛评分标准表
- 诊所污水污物粪便处理方案及周边环境
- 江苏开放大学2023年秋《马克思主义基本原理 060111》形成性考核作业2-实践性环节(占过程性考核成绩的30%)参考答案
- 《我是班级的主人翁》的主题班会
- 酒店安全设施及安全制度
- 近代化的早期探索与民族危机的加剧 单元作业设计
- 租赁机械设备施工方案
- 屋面融雪系统施工方案
- 二年级家长会语文老师课件
- 结构加固改造之整体结构加固教学课件
- 教堂安全风险分级管控体系方案全套资料(2019-2020新标准完整版)
评论
0/150
提交评论