相似三角形全章导学案_第1页
相似三角形全章导学案_第2页
相似三角形全章导学案_第3页
相似三角形全章导学案_第4页
相似三角形全章导学案_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、27.1.图形的相似(一)一、学习目标1.理解并掌握两个图形相似的概念。2.了解成比例线段的概念,会确定线段的比。二、新知链接1(1)请同学们先观察第27章章头图,他们的形状、大小有什么关系。(2)相似图形概念:_。(3)让同学们再举几个相似图形的例子2两条线段的比:两条线段的比,就是_。3成比例线段:对于四条线段a,b,c,d,如果其中_相等,如(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段。【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作或a:b=c:d;(4)若四条

2、线段满足,则有ad=bc三、合作探究例1如图,下面右边的四个图形中,与左边的图形相似的是( ) 例2一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少?(1)如果a=125cm,b=75cm,那么长与宽的比是多少?(2)如果a=1250mm,b=750mm,那么长与宽的比是多少?例3已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km?分析:根据比例尺=,可求出北京到上海的实际距离解:答:北京到上海的实际距离大约是_km四、课堂练习1观察下列图形,指出哪些是相似图形:相似图形:_和_;_和_;_和_。2下列

3、说法正确的是( )A小明上幼儿园时的照片和初中毕业时的照片相似.B商店新买来的一副三角板是相似的.C所有的课本都是相似的. D国旗的五角星都是相似的.3如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_cm,宽是_cm; (大)长是_cm,宽是_cm;(2)(小) ;(大) (3)你由上述的计算,能得到什么结论吗?4在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?5AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?27.1 图形的相似(二)一、学习目标1知道相似

4、多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等2会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算二、新知链接1 如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形2 问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等 3【结论】:(1)相似多边形的特征: 反之, (2)相似比: 问题:相似比为1时,相似的两个图形有什么关系? 结论: 三、合作探究例1下列说法正确的是( )A所有的平行四边形都相似 B所有的矩形都相似C所有的菱形都相似 D所有的正方形都相似例2(教材P39例题)例3已知四边形ABCD与四边形A1B1

5、C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题解:四、课堂练习1ABC与DEF相似,且相似比是,则DEF 与ABC与的相似比是( )A B C D2(选择题)下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形A3个 B4个 C5个 D6个3已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长

6、分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少? 4如图,ABEFCD,CD=4,AB=9,若梯形CDEF与梯形EFAB相似,求EF的长3如图,一个矩形ABCD的长AD= a cm,宽AB= b cm,E、F分别是AD、BC的中点,连接E、F,所得新矩形ABFE与原矩形ABCD相似,求a:b的值 27.2.1 相似三角形的判定(一)一、学习目标1经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展同学们的探究、交流能力2掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)相

7、似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似)3会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题二、新知链接1复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形在ABC与ABC中,如果A=A, B=B, C=C, 且 我们就说ABC与ABC相似,记作ABCABC,k就是它们的相似比反之如果ABCABC,则有A=A, B=B, C=C, 且 (3)问题:如果k=1,这两个三角形有怎样的关系?2教材P42的思考,并引导同学们探索与证明3【归纳】三角形相似的预备定理 三、合作探

8、究例1如图ABCDCA,ADBC,B=DCA(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6求AD、DC的长例2如图,在ABC中,DEBC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长 四、课堂练习1(选择)下列各组三角形一定相似的是( )A两个直角三角形 B两个钝角三角形 C两个等腰三角形 D两个等边三角形 2(选择)如图,DEBC,EFAB,则图中相似三角形一共有( )A1对 B2对 C3对 D4对3如图,DEBC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC

9、的长4如图,在ABCD中,EFAB,DE:EA=2:3,EF=4,求CD的长 27.2.1 相似三角形的判定(二)一、学习目标1初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法2经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养同学们获得数学猜想的经验,激发同学们探索知识的兴趣,体验数学活动充满着探索性和创造性3能够运用三角形相似的条件解决简单的问题 二、新知链接1复习提问:(1) 两个三角形全等有哪些判定方法? (2) 我们学习过哪些判定三角形相似的方法? (

10、3) 全等三角形与相似三角形有怎样的关系? (4) 如图,如果要判定ABC与ABC相似,是不是一定需要一一验证所有的对应角和对应边的关系? 2(1)提出问题:首先,由三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?(2)带领同学们画图探究;(3)【归纳】 三角形相似的判定方法1 3(1)提出问题:怎样证明这个命题是正确的呢?(2)引领同学们探求证明方法 4用上面同样的方法进一步探究三角形相似的条件:(1)提出问题:由三角形全等的SAS判定方法,我们也会想如果一个三角形的两条边与另一个三角形的两条边对应成比例,那么能否判

11、定这两个三角形相似呢?(2)让同学们画图,自主展开探究活动(3)【归纳】 三角形相似的判定方法2 三、合作探究例1(教材P46例1)分析:判定两个三角形是否相似,可以根据已知条件,看是不是符合相似三角形的定义或三角形相似的判定方法,对于(1)由于是已知一对对应角相等及四条边长,因此看是否符合三角形相似的判定方法2“两组对应边的比相等且它们的夹角相等的两个三角形相似”,对于(2)给的几个条件全是边,因此看是否符合三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”即可,其方法是通过计算成比例的线段得到对应边 例2已知:如图,在四边形ABCD中,B=ACD,AB=6,BC=4,AC=5,C

12、D=,求AD的长四、课堂练习1如果在ABC中B=30°,AB=5,AC=4,在ABC中,B=30°AB=10,AC=8,这两个三角形一定相似吗?试着画一画、看一看? 2如图,ABC中,点D、E、F分别是AB、BC、CA的中点,求证:ABCDEF3已知:如图,P为ABC中线AD上的一点,且BD2=PDAD,求证:ADCCDP27.2.1 相似三角形的判定(三)一、学习目标1经历两个三角形相似的探索过程,进一步发展同学们的探究、交流能力2掌握“两角对应相等,两个三角形相似”的判定方法3能够运用三角形相似的条件解决简单的问题二、新知链接1复习提问:(1)我们已学习过哪些判定三角形

13、相似的方法?(2)如图,ABC中,点D在AB上,如果AC2=ADAB,那么ACD与ABC相似吗?说说你的理由(3)如(2)题图,ABC中,点D在AB上,如果ACD=B,那么ACD与ABC相似吗? (4)【归纳】 三角形相似的判定方法2 三、合作探究例1(教材P48例2)例2 (补充)已知:如图,矩形ABCD中,E为BC上一点,DFAE于F,若AB=4,AD=5,AE=6,求DF的长解:四、课堂练习1已知:如图,1=2=3,求证:ABCADE2下列说法是否正确,并说明理由(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形3.已知:如图,ABC 的高AD、

14、BE交于点F求证:4已知:如图,BE是ABC的外接圆O的直径,CD是ABC的高(1)求证:ACBC=BECD;(2)若CD=6,AD=3,BD=8,求O的直径BE的长课题 27.2.1相似三角形的判定(复习)学习目标:掌握两个三角形相似的判定方法;会用其解决问题。导学过程:一、自主探究(课前导学)两个三角形相似的判断方法:1、定义:两个三角形的 , ,这个两个三角形相似。2、预备定理: 于三角形一边的直线和其他两边(或 )相交,所构成的三角形与原三角形 。3、判定定理1: 。(SSS)4、判定定理2: 。(SAS)5、判定定理3: 。(ASA或AAS)6、相似三角形的判定方法二、合作探究(课堂

15、导学)例1 如图所示,给出下列条件: B ACD; ADC ACB; ; AC2AD·AB。其中能够单独判定 ABC ACD的有 (填序号)例2 如图所示,若 BAD CAE,再添加一个条件 (添加一条即可),则 ABC ABC。例3如图,点A、B、C、D、E、F、G、H、K都是7×8方格纸中的格点,为使 DEM ABC,则点M应是F、G、H、K四点中的()A、FB、G C、HD、KBCEDA864例4 如图所示,CE90°,AC6,BC8,AE4,则AD的长为多少?例5、如图,在矩形中,延着BF折叠,使C落在AD边的处。找出与相似的三角形,并加以证明。三、巩固训

16、练:1、在 ABC与 ABC中,有下列条件: ; ; A A; C C。如果从中任取两个条件组成一组,那么能判断 ABC ABC的共有( )A、1组B、2组C、3组D、4组2、在直角坐标系中,已知点A(2,0),B(0,4),C(0,3),过点C作直线交x轴于点D,使得以D,O,C为顶点的三角形与 AOB相似,求点D的坐标3、如图所示,在正方形ABCD中,有一块直角三板按图摆放。(1)写出图中的相似的三角形;(2)从上面任选一组进行证明四、课堂检测1、如图所示,正方形ABCD边长是2,BE=CE,MN=1,线段MN的端点M、N分别在CD、AD上滑动,当DM= 时, ABE与以D、M、N为顶点的

17、三角形相似2. 如图,在 ABC中,AD是BC边上的中线,点N在AB边上,且AN:AB=1:5,CN交AD与M点,则AM:MD的比为()A、1:2B、1:3C、2:3D、1:13、如图所示,已知E是矩形ABCD的边CD上一点,BFAE于F。试证明:AB·ADAE·BF27.2.2 相似三角形的应用举例一、学习目标1 进一步巩固相似三角形的知识 2 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题 3 通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力二

18、、新知链接问:世界现存规模最大的金字塔位于哪个国家,叫什么金字塔?金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” 塔的个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米据考证,为建成大金字塔,共动用了10万人花了20年时间原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低在古希腊,有一位伟大的科学家叫泰勒斯一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的你知道泰勒斯是怎样测量大金字塔的高度的吗?三、合作探究例1(教材P49例3测量金字塔高度问题) 例

19、2(教材P50例4测量河宽问题)解:略(见教材P50)问:你还可以用什么方法来测量河的宽度? 解法二:如图构造相似三角形(解法略) 例3(教材P50例5盲区问题)分析:略(见教材P50)解:略(见教材P51)四、课堂练习1 在同一时刻物体的高度与它的影长成正比例在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?2 小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高? 3.如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍

20、击球的高度h(设网球是直线运动)4.小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少? 27.2.3 相似三角形的周长与面积一、学习目标1 理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方2 能用三角形的性质解决简单的问题二、新知链接1复习提问:已知: ABCABC,根据相似的定义,我们有哪些结论? 问:两个三角形相似,除了对应边成比例、对应角相等之外,我们还可以得到哪些结论? 2思考:(

21、1)如果两个三角形相似,它们的周长之间有什么关系? (2)如果两个三角形相似,它们的面积之间有什么关系? (3)两个相似多边形的周长和面积分别有什么关系? 推导见教材P54结论相似三角形的性质:性质1 即: 性质2 即: 相似多边形的性质1相似多边形的性质2三、合作探究例 1已知:如图:ABC ABC,它们的周长分别是 60 cm 和72 cm,且AB15 cm,BC24 cm,求BC、AB、AB、AC的长 分析:根据相似三角形周长的比等于相似比可以求出BC等边的长 例2(教材P53例6) 分析:根据已知可以得到,又有夹角D=A,由相似三角形的判定方法2 可以得到这两个三角形相似,且相似比为,

22、故DEF的周长和面积可求出四、课堂练习1填空:(1)如果两个相似三角形对应边的比为35 ,那么它们的相似比为_,周长的比为_,面积的比为_(2)如果两个相似三角形面积的比为35 ,那么它们的相似比为_,周长的比为_(3)连结三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于_,面积比等于_(4)两个相似三角形对应的中线长分别是6 cm和18 cm,若较大 三角形的周长是42 cm ,面积是12 cm 2,则较小三角形的周长为_cm,面积为_cm22如图,在正方形网格上有A1B1C1和A2B2C2,这两个三角形相似吗?如果相似,求出A1B1C1和A2B2C2的面积比3已知:如图

23、,ABC中,DEBC,(1)若, 求的值; 求的值; 若,求ADE的面积;(2)若,过点E作EFAB交BC于F,求BFED的面积;(3)若, ,过点E作EFAB交BC于F,求BFED的面积27. 3 位似(一)一、学习目标1了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质2掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小二、新知链接1观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征? 2问:已知:如图,多边形ABCDE,把它放大为原来的2倍,即新图与原图的相似比为2应该怎样做?你能说出画相似图形的一种方法吗?三、合作探究例1(

24、补充)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心分析:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可解:例2 把图1中的四边形ABCD缩小到原来的 分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为12 四、课堂练习1画出所给图中的位似中心2.把右图中的五边形ABCDE扩大到原来的2倍3已知:如图,ABC,画ABC,使ABCABC,且使相似比为1.5,要求(1)位似中心在ABC的外部;(2)位似中心在ABC

25、的内部;(3)位似中心在ABC的一条边上;(4)以点C为位似中心 27. 3 位似(二)一、学习目标1巩固位似图形及其有关概念2会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律3了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换二、新知链接1如图,ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将ABC向左平移三个单位得到A1B1C1,写出A1、B1、C1三点的坐标; (2)写出ABC关于x轴对称的A2B2C2三个顶点A2、B2、C2的坐标; (3)将ABC绕点O旋转180°得到A

26、3B3C3,写出A3、B3、C3三点的坐标 2在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示3探究:(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0)以原点O为位似中心,相似比为,把线段AB缩小观察对应点之间坐标的变化,你有什么发现? (2)如图,ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将ABC放大,观察对应顶点坐标的变化,你有什么发现? 【归纳】 位似变换中对应点的坐标的变化规律: 五、合

27、作探究例1(教材P63的例题)解:问:你还可以得到其他图形吗?请你自己试一试!解法二:例2(教材P64)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗? 分析:观察的角度不同,答案就不同如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4321的位似图形, 六、课堂练习1 ABO的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将ABO放大为EFO,使EFO与ABO的相似比为2.51,求点E和点F的坐标2 如图,AOB缩小后得到COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似

28、比和面积比3如图,将图中的ABC以A为位似中心,放大到1.5倍,请画出图形,并指出三个顶点的坐标所发生的变化4请用平移、轴对称、旋转和位似这四种变换设计一种图案(选择的变换不限)相似三角形复习学案1、 知识梳理:1、比例、第四比例项、比例中项、比例线段;2、比例性质:(1)基本性质: (2)合比定理:(3)等比定理:3、相似三角形定义:_4、判定方法:_5、相似三角形性质:(1)对应角相等,对应边成比例;(2)对应线段之比等于 ;(对应线段包括哪几种主要线段?)(3)周长之比等于 ;(4)面积之比等于 6、相似三角形中的基本图形(1)平行型:(A型,X型) (2)交错型: (3)旋转型: (4

29、)母子三角形: 2、 基本应用:1、四条线段a、c、b、d成比例,其中b=3cm,c=2cm,d=6cm,则线段a的长为 2、已知四条线段a、b、c、d的长度,判断它们是否成比例?(1)a=16 cm b=8 cm c=5 cm d=10 cm (2)a=8 cm b=5 cm c=6 cm d=10 cm3、已知 ,则的值为 4、若a:b:c=2:3:4,且a+bc=5,则ab= 5、若,则= 6、a是b、c的比例中项,且,则= 7、已知a、b、c为非0的整数,则k的值是 8、若,且2ab+3c=21,则abc.= 9、把长度为20cm的线段进行黄金分割,则较长线段的长是_cm,较短线段的长

30、是_cm一个矩形是黄金矩形,若它的长为4cm,则它的宽为 。10、以下的命题中:所有的正方形都相似;所有的矩形都相似;所有的三角形都相似;所有的等腰三角形都相似;所有的直角三角形都相似;所有的等腰直角三角形都相似;所有的等边三角形都相似;所有的正五边形都相似;其中正确的命题有 (填序号)11、两个相似三角形对应边的比为1:3,则周长比为 ,面积比为 ,相似比为 ;对应角平分线比为 ,对应中线比为 ,对应高线比为 。 12、两个相似多边形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个三角形的周长分别是 。13、一个三角形钢架三边长分别为20cm,50cm,60cm,现要做一个

31、与其相似的三角形钢架,而只有长为30和50的两根钢架,要求以其中一根为一边,从另一根上截下两段(允许有余料),作为两边,则不同的截法有 种14. 在比例尺为11000的地图上,一个周长为4cm,面积为1cm2的地方,所表示的实际周长为 ,面积是 。15.如图,已知:CE,那么图中有几对相似三角形?说说你的理由.又如果BC4,DE2,OC6,OB3,那么OE的长是多少?3、 典型例题例1.如图,点O是ABC的两条角平分线的交点,过O作AO的垂线交AB于D。求证:OBDCBO。变式1:已知如图,在ABC中,ADAE,AODE于O,DE交AB于D,交AC于E,BO平分ABC。求证:。变式2:已知如图

32、(同变式1图),在ABC中,O为两内角平分线的交点,过点O作直线交AB于D,交AC于E,且ADAE。求证:(1)BDOOEC;(2)。 例2.如图,在ABC中,BAC900,ADBC于D,E为AC中点,DE交BA的延长线于F。求证:ABACBFDF。变式:本题条件、结论不变,而只改变图形的位置时,如下图所示,本题又该怎样证明呢?例3如图,梯形ABCD中,ADBC,BECD于E,且BCBD,对角线AC、BD相交于G,AC、BE相交于F。求证:。例4有一块三角形的余料ABC,要把它加工成矩形的零件,已知:BC8cm,高AD12cm,矩形EFGH的边EF在BC边上,G、H分别在AC、AB上,设HE的

33、长为ycm、EF的长为xcm写出y与x的函数关系式。当x取多少时,EFGH是正方形。例,(2006年深圳市)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走2米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,求路灯A的高度。例、ABC中,C=900,BC=8厘米,ACBC=34,点P从点B出发,沿BC向点C以2厘米/秒的速度移动,点Q从点C出发,沿CA向点A以1厘米/秒的速度移动。如果P、Q分别从B、C同时出发:(1)经过多少秒时CPQCBA?(2)经过多少秒时以C、P、Q为顶点的三角形恰与ABC相似?4、 同步习题(1) 基础题1. 已知,则的值为_

34、 2 如图,平行四边形ABCD中,AEEB=12,若SAEF=6,则SCDF= 3如图,在平行四边形ABCD中,E是BC延长线上一点,AE交CD于点F,若AB7cm,CF3cm,则ADCE 4如图,矩形ABCD中,E是BC上的点,AEDE,BE4,EC1,则AB的长为 5如图,已知D、E分别是的AB、 AC边上的点,并且三角形ADE与四边形DBCE的面积比为4:5,那么AE:AC等于 6如图,DE是三角形ABC的中位线,ADE的面积为3cm2,则梯形DBCE的面积为 7如图,已知ABC的面积为4 cm2,它的三条中位线组成DEF,DEF的三条中位线组成MNP,则MNP的面积等于 8E是矩形ABCD的边CD上的点,BE交AC于点O,已知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论