版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第1讲 第1章 1.1.1 柱、锥、台、球的结构特征知识要点:结 构 特 征图例棱柱(1)两底面相互平行,其余各面都是平行四边形;(2)侧棱平行且相等.圆柱(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.棱锥(1)底面是多边形,各侧面均是三角形;(2)各侧面有一个公共顶点.圆锥(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.棱台(1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.圆台(1)两底面相互平行;(2)是用一个平
2、行于圆锥底面的平面去截圆锥,底面和截面之间的部分.球(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.1.下列说法错误的是( )A.多面体至少有四个面 B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 答案:D2.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为_ cm. 答案:123.在本节我们学过的常见几何体中,如果用一个平面去截几何体,如果截面是三角形,那么这个几何体可能是_.答案:棱锥、棱柱、棱台、圆锥第2讲 1.1.2 简单组合体的结构特征例题精讲:【例1】在四棱锥
3、的四个侧面中,直角三角形最多可有( ). A. 1个 B. 2个 C. 3个 D. 4个 选D.【例2】已知球的外切圆台上、下底面的半径分别为,求球的半径. 解:圆台轴截面为等腰梯形,与球的大圆相切,由此得梯形腰长为R+r,梯形的高即球的直径为,所以,球的半径为.第3讲 1.2.2 空间几何体的三视图例题精讲:【例1】画出下列各几何体的三视图:解:【例2】画出下列三视图所表示的几何体.解:【例3】如图,图(1)是常见的六角螺帽,图(2)是一个机器零件(单位:cm),所给的方向为物体的正前方. 试分别画出它们的三视图.解第4讲 1.2.3 空间几何体的直观图知识要点:“直观图”最常用的画法是斜二
4、测画法,由其规则能画出水平放置的直观图,其实质就是在坐标系中确定点的位置的画法. 基本步骤如下:(1) 建系:在已知图形中取互相垂直的x轴和y轴,得到直角坐标系,直观图中画成斜坐标系,两轴夹角为.(2)平行不变:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x或y轴的线段.(3)长度规则:已知图形中平行于x轴的线段,在直观图中保持长度不变;平行于y轴的线段,长度为原来的一半.第5讲 1.3.1 柱体、锥体、台体的表面积学习目标:了解棱柱、棱锥、台的表面积的计算公式(不要求记忆公式);能运用柱、锥、台的表面积进行计算和解决有关实际问题.知识要点:表面积相关公式表面积相关公式棱柱圆柱
5、(r:底面半径,h:高)棱锥圆锥 (r:底面半径,l:母线长)棱台圆台(r:下底半径,r:上底半径,l:母线长)例题精讲:【例1】已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.解:【例2】一个正三棱柱的三视图如右图所示,求这个正三棱柱的表面积.解:.第6讲 1.3.1 柱体、锥体、台体的体积知识要点:1. 体积公式:体积公式体积公式棱柱圆柱棱锥圆锥棱台圆台2. 柱、椎、台之间,可以看成一个台体进行变化,当台体的上底面逐渐收缩为一个点时,它就成了锥体;当台体的上底面逐渐扩展到与下底面全等时,它就成了柱体. 因而体积会有以下的关系: .例题精讲:【例1】一个长
6、方体的相交于一个顶点的三个面的面积分别是2、3、6,则长方体的体积是 .解:设长方体的长宽高分别为,则,三式相乘得.所以,长方体的体积为6.【例2】一块边长为10的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域. 解:如图,设所截等腰三角形的底边边长为.在中,, 所以, 于是.依题意函数的定义域为.【例3】一个无盖的圆柱形容器的底面半径为,母线长为6,现将该容器盛满水,然后平稳缓慢地将容器倾斜让水流出,当容器中的水是原来的时,圆柱的母线与水平面所成的角的大小为 .解:容器中水的体积为.流出水的
7、体积为,如图,.设圆柱的母线与水平面所成的角为,则,解得.第7讲 1.3.2球的体积和表面积知识要点:1. 表面积: (R:球的半径). 2. 体积:.例题精讲:【例2】表面积为的球,其内接正四棱柱的高是,求这个正四棱柱的表面积.解:设球半径为,正四棱柱底面边长为,则作轴截面如图,又,.【例3】设A、B、C、D是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( ). ABCD【解】由已知可得,A、B、C、D在球的一个小圆上. AB=BC=CD=DA=3, 四边形为正方形. 小圆半径. 由得,解得. 球的体积. 所以选A.第8讲 2.1
8、.1 平面知识要点:1. 点在直线上,记作;点在平面内,记作;直线在平面内,记作.2. 平面基本性质即三条公理的“文字语言”、“符号语言”、“图形语言”列表如下:公理1公理2公理3图形语言文字语言如果一条直线上的两点在一个平面内,那么这条直线在此平面内.过不在一条直线上的三点,有且只有一个平面.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言3.公理2的三条推论:推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面;推论3 经过两条平行直线,有且只有一个平面.例题精讲:【例1】如果一条直线与两条平行直线都相交,那
9、么这三条直线是否共面?【例2】空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,已知EF和GH交于P点,求证:EF、GH、AC三线共点. 解:PEF,EF面ABC,P面ABC. 同理P面ADC. P在面ABC与面ADC的交线上,又 面ABC面ADC=AC, PAC,即EF、HG、AC三线共点.【例3】求证:两两相交且不过同一个点的三条直线必在同一平面内.已知:直线两两相交,交点分别为,求证:直线共面. 证明:因为A,B,C三点不在一条直线上,所以过A,B,C三点可以确定平面 因为A,B,所以AB 同理BC ,AC .所以AB,BC,CA三直线共面【例4】在正方体中,(1)
10、与是否在同一平面内?(2)点是否在同一平面内?(3)画出平面与平面的交线,平面与平面的交线. 解:(1)在正方体中, 由公理2的推论可知,与可确定平面,与在同一平面内. (2)点不共线,由公理3可知,点可确定平面, 点在同一平面内. (3), 点平面,平面,又平面,平面, 平面平面,同理平面平面第9讲 2.1.2 空间中直线与直线之间的位置关系知识要点:1.空间两条直线的位置关系:2. 已知两条异面直线,经过空间任一点作直线,把所成的锐角(或直角)叫异面直线所成的角(或夹角). 所成的角的大小与点的选择无关,为了简便,点通常取在异面直线的一条上;异面直线所成的角的范围为,如果两条异面直线所成的
11、角是直角,则叫两条异面直线垂直,记作. 求两条异面直线所成角的步骤可以归纳为四步:选点平移定角计算.例题精讲:【例1】已知异面直线a和b所成的角为50,P为空间一定点,则过点P且与a、b所成角都是30的直线有且仅有( ). A. 1条 B. 2条 C. 3条 D. 4条解:过P作a,b,若Pa,则取a为,若Pb,则取b为这时,相交于P点,它们的两组对顶角分别为50和130. 记,所确定的平面为,那么在平面内,不存在与,都成30的直线 过点P与,都成30角的直线必在平面外,这直线在平面的射影是,所成对顶角的平分线其中射影是50对顶角平分线的直线有两条l和,射影是130对顶角平分线的直线不存在故答
12、案选B.【例2】如图正方体中,E、F分别为D1C1和B1C1的中点,P、Q分别为AC与BD、A1C1与EF的交点. (1)求证:D、B、F、E四点共面;(2)若A1C与面DBFE交于点R,求证:P、Q、R三点共线.证明:(1) 正方体中,. 又 中,E、F为中点, . , 即D、B、F、E四点共面.(2) , .又 , , . 即P、Q、R三点共线【例3】已知直线a/b/c,直线d与a、b、c分别相交于A、B、C,求证:a、b、c、d四线共面.证明:因为a/b,由公理2的推论,存在平面,使得.又因为直线d与a、b、c分别相交于A、B、C,由公理1,.假设,则, 在平面内过点C作,因为b/c,则
13、,此与矛盾. 故直线.综上述,a、b、c、d四线共面.【例4】如图中,正方体ABCDA1B1C1D1,E、F分别是AD、AA1的中点.(1)求直线AB1和CC1所成的角的大小;(2)求直线AB1和EF所成的角的大小.解:(1)如图,连结DC1 , DC1AB1, DC1 和CC1所成的锐角CC1D就是AB1和CC1所成的角. CC1D=45, AB1 和CC1所成的角是45.(2)如图,连结DA1、A1C1, EFA1D,AB1DC1, A1DC1是直线AB1和EF所成的角. A1DC1是等边三角形, A1DC1=60,即直线AB1和EF所成的角是60.第10讲 2.1.3 直线与平面、平面与
14、平面位置关系知识要点:1. 直线与平面的位置关系:(1)直线在平面内(有无数个公共点);(2)直线与平面相交(有且只有一个公共点);(3)直线与平面平行(没有公共点). 分别记作:;.2. 两平面的位置关系:平行(没有公共点);相交(有一条公共直线).分别记作;.例题精讲:【例1】已知空间边边形ABCD各边长与对角线都相等,求异面直线AB和CD所成的角的大小. 解:分别取AC、AD、BC的中点P、M、N连接PM、PN,由三角形的中位线性质知PNAB,PMCD,于是MPN就是异面直线AB和CD成的角(如图所示).连结MN、DN,设AB=2, PM=PN=1.而AN=DN=,由MNAD,AM=1,
15、得MN=,MN2=MP2+NP2,MPN=90.异面直线AB、CD成90角.【例2】在空间四边形ABCD中,E、H分别是AB、AD的中点,F、G分别是CB、CD的中点,若AC + BD = a ,ACBD =b,求.解:四边形EFGH是平行四边形, =2=.ABCDEFGH【例3】已知空间四边形ABCD中,E、H分别是AB、AD的中点,F、G分别是BC、CD上的点,且.求证:(1)E、F、G、H四点共面;(2)三条直线EF、GH、AC交于一点. 证明:(1) 在ABD和CBD中, E、H分别是AB和CD的中点, EHBD.又 , FGBD. EHFG. 所以,E、F、G、H四点共面.第11讲
16、2.2.1 直线与平面平行的判定知识要点:1. 定义:直线和平面没有公共点,则直线和平面平行.2. 判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行. 符号表示为:. 图形如右图所示.例题精讲:【例1】已知P是平行四边形ABCD所在平面外一点,E、F分别为AB、PD的中点,求证:AF平面PEC证明:设PC的中点为G,连接EG、FG. F为PD中点, GFCD且GF=CD. ABCD, AB=CD, E为AB中点, GFAE, GF=AE, 四边形AEGF为平行四边形. EGAF, 又 AF平面PEC, EG平面PEC, AF平面PEC.【例2】在正方体ABCD-A1B1
17、C1D1中,E、F分别为棱BC、C1D1的中点. 求证:EF平面BB1D1D. 证明:连接AC交BD于O,连接OE,则OEDC, OE=DC. DCD1C1, DC=D1C1 , F为D1C1的中点,ABC D E F GM O OED1F, OE=D1F, 四边形D1FEO为平行四边形. EFD1O. 又 EF平面BB1D1D, D1O平面BB1D1D, EF平面BB1D1D.【例3】如图,已知、分别是四面体 的棱、的中点,求证:平 面. 证明:如右图,连结,交于点,连结,在中,、分别是、中点, ,为中点, 为中点,在中,、为、中点, ,又平面,平面, 平面.点评:要证明直线和平面平行,只须
18、在平面内找到一条直线和已知直线平行就可以了. 注意适当添加辅助线,重视中位线在解题中的应用.【例4】如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点(1)求证:MN/平面PAD;(2)若,求异面直线PA与MN所成的角的大小.解:(1)取PD的中点H,连接AH,由N是PC的中点, NH. 由M是AB的中点, NHAM, 即AMNH为平行四边形. . 由, .(2) 连接AC并取其中点为O,连接OM、ON, OMBC,ONPA, 所以就是异面直线PA与MN所成的角,且MONO. 由,, 得OM=2,ON=所以,即异面直线PA与MN成30的角点评:已知中点,牢牢抓住中位线
19、得到线线平行,通过线线平行转化为线面平行. 求两条异面直线所成角,方法的关键也是平移其中一条或者两条直线,得到相交的线线角,通过解三角形而得.第12讲 2.2.2 平面与平面平行的判定知识要点:面面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行用符号表示为:.例题精讲:【例1】如右图,在正方体ABCDA1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP平面A1BD.A1AB1BC1CD1DGEF证明:连结B1D1,P、N分别是D1C1、B1C1的中点, PNB1D1.又B1D1BD,PNBD. 又PN不在平面A1BD上,PN平
20、面A1BD.同理,MN平面A1BD. 又PNMN=N, 平面PMN平面A1BD.【例2】正方体ABCDA1B1C1D1中(1)求证:平面A1BD平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1平面FBD 证明:(1)由B1BDD1,得四边形BB1D1D是平行四边形,B1D1BD,又BD 平面B1D1C,B1D1平面B1D1C,BD平面B1D1C同理A1D平面B1D1C而A1DBDD,平面A1BD平面B1CD(2)由BDB1D1,得BD平面EB1D1取BB1中点G,AEB1G从而得B1EAG,同理GFADAGDFB1EDFNMPDCQBADF平面EB1D1平面EB1
21、D1平面FBD 【例3】已知四棱锥P-ABCD中, 底面ABCD为平行四边形. 点M、N、Q分别在PA、BD、PD上, 且PM:MA=BN:ND=PQ:QD. 求证:平面MNQ平面PBC. 证明: PM:MA=BN:ND=PQ:QD. MQ/AD,NQ/BP,而BP平面PBC,NQ 平面PBC, NQ/平面PBC.又ABCD为平行四边形,BC/AD, MQ/BC,而BC平面PBC,MQ 平面PBC, MQ/平面PBC.由MQNQ=Q,根据平面与平面平行的判定定理, 平面MNQ平面PBC.点评:由比例线段得到线线平行,依据线面平行的判定定理得到线面平行,证得两条相交直线平行于一个平面后,转化为面
22、面平行. 一般证“面面平面”问题最终转化为证线与线的平行.第13讲 2.2.3 直线与平面平行的性质知识要点:线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行. 即:.例题精讲:【例1】经过正方体ABCD-A1B1C1D1的棱BB1作一平面交平面AA1D1D于E1E,求证:E1EB1B证明: , .又 , .则.【例2】如图,求证:.ABCD证明:连结,直线和可以确定一个平面,记为, 又, 四边形为平行四边形, .第14讲 2.2.4 平面与平面平行的性质知识要点:1. 面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行
23、. 用符号语言表示为:.2. 其它性质:; ;夹在平行平面间的平行线段相等.例题精讲:【例1】如图,设平面平面,AB、CD是两异面直线,M、N分别是AB、CD的中点,且A、C,B、D. 求证:MN. 证明:连接BC,取BC的中点E,分别连接ME、NE,则MEAC, ME平面,又 NEBD, NE, 又MENE=E,平面MEN平面, MN平面MEN,MN. 【例2】如图,A,B,C,D四点都在平面a,b外,它们在a内的射影A1,B1,C1,D1是平行四边形的四个顶点,在b内的射影A2,B2,C2,D2在一条直线上,求证:ABCD是平行四边形 证明: A,B,C,D四点在b内的射影A2,B2,C2
24、,D2在一条直线上,A,B,C,D四点共面又A,B,C,D四点在a内的射影A1,B1,C1,D1是平行四边形的四个顶点,平面ABB1A1平面CDD1C1AB,CD是平面ABCD与平面ABB1A1,平面CDD1C1的交线ABCD同理ADBC 四边形ABCD是平行四边形第15讲 2.3.1 直线与平面垂直的判定知识要点:1. 定义:如果直线与平面内的任意一条直线都垂直,则直线与平面互相垂直,记作. 平面的垂线,直线的垂面,它们的唯一公共点叫做垂足.(线线垂直线面垂直)2. 判定定理:一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 符号语言表示为:若,B,则3. 斜线和平面所成的
25、角,简称“线面角”,它是平面的斜线和它在平面内的射影的夹角. 求直线和平面所成的角,几何法一般先定斜足,再作垂线找射影,然后通过解直角三角形求解,可以简述为“作(作出线面角)证(证所作为所求)求(解直角三角形)”. 通常,通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线是产生线面角的关键.例题精讲:【例1】四面体中,分别为的中点,且,求证:平面. 证明:取的中点,连结,分别为的中点,.又,在中,又,即,平面.【例2】已知棱长为1的正方体ABCDA1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成的角的正弦值.解:取CD的中点F,连接EF交平面于O,连AO.由已知正方体
26、,易知平面,所以为所求.在中,.所以直线AE与平面所成的角的正弦值为.【例3】三棱锥中,平面ABC,垂足为O,求证:O为底面ABC的垂心.证明:连接OA、OB、OC, 平面ABC, .又 , ,得, O为底面ABC的垂心.点评:此例可以变式为“已知,求证”,其思路是接着利用射影是垂心的结论得到后进行证明. 三条侧棱两两垂直时,也可按同样的思路证出.第16讲 2.3.2 平面与平面垂直的判定知识要点:1. 定义:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle). 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角. (简记)2. 二面角的平面角:在二面
27、角的棱上任取一点,以点为垂足,在半平面内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角. 范围:.3. 定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. 记作.4. 判定:一个平面过另一个平面的垂线,则这两个平面垂直. (线面垂直面面垂直)例题精讲:【例1】已知正方形ABCD的边长为1,分别取边BC、CD的中点E、F,连结AE、EF、AF,以AE、EF、FA为折痕,折叠使点B、C、D重合于一点P.(1)求证:APEF;(2)求证:平面APE平面APF.证明:(1)如右图,APE=APF=90,PEPF=P, PA平面PEF. EF平面PEF,PAEF.(2
28、)APE=EPF=90,APPF=P,PE平面APF.又PE平面PAE,平面APE平面APF.【例2】如图, 在空间四边形ABCD中, 分别是的中点,求证:平面平面. 证明:为AC中点,所以. 同理可证 面BGD. 又易知EF/AC,则面BGD. 又因为面BEF,所以平面平面.第17讲 2.3.3 线面、面面垂直的性质知识要点:1. 线面垂直性质定理:垂直于同一个平面的两条直线平行. (线面垂直线线平行)2. 面面垂直性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 用符号语言表示为:若,则.(面面垂直线面垂直)例题精讲:ACBa【例1】把直角三角板ABC的直角边BC放置
29、于桌面,另一条直角边AC与桌面所在的平面垂直,a是内一条直线,若斜边AB与a垂直,则BC是否与a垂直?解:注:若BC与a垂直,同理可得AB与a也垂直,其实质是三垂线定理及逆定理,证明过程体现了一种重要的数学转化思想方法: “线线垂直线面垂直线线垂直”.【例2】如图,AB是圆O的直径,C是圆周上一点,PA平面ABC. (1)求证:平面PAC平面PBC;(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面. 解:(1)证明:C是AB为直径的圆O的圆周上一点,AB是圆O的直径, BCAC.又PA平面ABC,BC平面ABC,BCPA,从而BC平面PAC. BC 平面PB
30、C, 平面PAC平面PBC.(2)平面PAC平面ABCD;平面PAC平面PBC;平面PAD平面PBD;平面PAB平面ABCD;平面PAD平面ABCD.第18讲 第3章 3.1.1 倾斜角与斜率知识要点:1. 当直线l与x轴相交时,我们把x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时, 我们规定它的倾斜角为0. 则直线l的倾斜角的范围是.2. 倾斜角不是90的直线的斜率,等于直线的倾斜角的正切值,即. 如果知道直线上两点,则有斜率公式. 特别地是,当,时,直线与x轴垂直,斜率k不存在;当,时,直线与y轴垂直,斜率k=0.注意:直线的倾斜角=90时,斜率不存在
31、,即直线与y轴平行或者重合. 当=90时,斜率k=0;当时,斜率,随着的增大,斜率k也增大;当时,斜率,随着的增大,斜率k也增大. 这样,可以求解倾斜角的范围与斜率k取值范围的一些对应问题.例题精讲:【例2】已知过两点, 的直线l的倾斜角为45,求实数的值.解: , ,解得 或. 但当时,A、B重合,舍去 【例3】已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值解: , . A、B、C三点在一条直线上, , 即, 解得或.第19讲 3.1.2 两条直线平行与垂直的判定知识要点:1. 对于两条不重合的直线 、,其斜率分别为、,有:(1);(2).2. 特例:两条直
32、线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x轴;.例题精讲:【例1】四边形ABCD的顶点为、,试判断四边形ABCD的形状.解:AB边所在直线的斜率,CD边所在直线的斜率,BC边所在直线的斜率,DA边所在直线的斜率, , AB/CD,BC/DA,即四边形ABCD为平行四边形.又 , ABBC,即四边形ABCD为矩形.【例2】已知的顶点,其垂心为,求顶点的坐标解:设顶点A的坐标为 , , 即 ,化简为,解之得:. A的坐标为.【例3】(1)已知直线经过点M(-3,0)、N(-15,-6),经过点R(-2,)、S(0,),试判断与是否平行?(2)的倾斜角为45,经过点P(-2,
33、-1)、Q(3,-6),问与是否垂直?点评:当与的斜率存在时,. 斜率不存在时,进行具体的分析. 由此先计算出斜率,根据斜率的相等或互为负倒数,从而判别平行或垂直.第20讲 3.2.1 直线的点斜式方程知识要点:1. 点斜式:直线过点,且斜率为k,其方程为.2. 斜截式:直线的斜率为k,在y轴上截距为b,其方程为.3. 点斜式和斜截式不能表示垂直x轴直线. 若直线过点且与x轴垂直,此时它的倾斜角为90,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为,或. 4. 注意:与是不同的方程,前者表示的直线上缺少一点,后者才是整条直线.例题精讲:【例1】写出下列点斜式直线方程: (1)经过点,斜
34、率是4;(2)经过点,倾斜角是.【例2】已知直线.(1)求直线恒经过的定点;(2)当时,直线上的点都在轴上方,求实数的取值范围.解:(1)由,易知时,所以直线恒经过的定点.(2)由题意得,解得.【例3】光线从点A(3,4)发出,经过x轴反射,再经过y轴反射,光线经过点 B(2,6),求射入y轴后的反射线的方程.解:A(3,4)关于x轴的对称点A1(3,4)在经x轴反射的光线上,同样A1(3,4)关于y轴的对称点A2(3,4)在经过射入y轴的反射线上,k=2. 故所求直线方程为y6=2(x+2), 即2x+y2=0.点评:由物理中光学知识知,入射线和反射线关于法线对称. 光线的反射问题,也常常需
35、要研究对称点的问题. 注意知识间的相互联系及学科间的相互渗透.【例4】已知直线经过点,且与两坐标轴围成的三角形的面积为5,求直线的方程解:由已知得与两坐标轴不垂直直线经过点, 可设直线的方程为,即.则直线在轴上的截距为,在轴上的截距为.根据题意得,即.当时,原方程可化为,解得;当时,原方程可化为,此方程无实数解.故直线的方程为,或.即或.点评:已知直线过一点时,常设其点斜式方程,但需注意斜率不存在的直线不能用点斜式表示,从而使用点斜式或斜截式方程时,要考虑斜率不存在的情况,以免丢解. 而直线在坐标轴上的截距,可正、可负,也可以为零,不能与距离混为一谈,注意如何由直线方程求其在坐标轴上的截距.第
36、21讲 3.2.2 直线的两点式方程知识要点:1. 两点式:直线经过两点,其方程为, 2. 截距式:直线在x、y轴上的截距分别为a、b,其方程为.3. 两点式不能表示垂直x、y轴直线;截距式不能表示垂直x、y轴及过原点的直线.4. 线段中点坐标公式.例题精讲:【例1】已知顶点为,求过点且将面积平分的直线方程.解:求出中点的坐标,则直线即为所求,由直线方程的两点式得,即.【例2】菱形的两条对角线长分别等于8和6,并且分别位于x轴和y轴上,求菱形各边所在的直线的方程解:设菱形的四个顶点为A、B、C、D,如右图所示. 根据菱形的对角线互相垂直且平分可知,顶点A、B、C、D在坐标轴上,且A、C关于原点
37、对称,B、D也关于原点对称.所以A(,0),C(,0),B(0,3),D(0,3). 由截距式,得直线AB的方程:1,即3xy120;直线BC的方程:1, 即3xy120;直线AD方程:1, 即3 xy120;直线CD方程:1即3 xy120.第22讲 3.2.3 直线的一般式方程知识要点:1. 一般式:,注意A、B不同时为0. 直线一般式方程化为斜截式方程,表示斜率为,y轴上截距为的直线.2 与直线平行的直线,可设所求方程为;与直线垂直的直线,可设所求方程为. 过点的直线可写为.经过点,且平行于直线l的直线方程是;经过点,且垂直于直线l的直线方程是.3. 已知直线的方程分别是:(不同时为0)
38、,(不同时为0),则两条直线的位置关系可以如下判别:(1); (2);(3)与重合; (4)与相交.如果时,则;与重合;与相交. 例题精讲:【例1】已知直线:,:,问m为何值时:(1);(2).解:(1)时,则,解得m0.(2)时,, 解得m1.【例2】(1)求经过点且与直线平行的直线方程;(2)求经过点且与直线垂直的直线方程.解:(1)由题意得所求平行直线方程,化为一般式.(2) 由题意得所求垂直直线方程,化为一般式.【例3】已知直线l的方程为3x+4y12=0,求与直线l平行且过点(1,3)的直线的方程分析:由两直线平行,所以斜率相等且为,再由点斜式求出所求直线的方程. 解:直线l:3x+
39、4y12=0的斜率为, 所求直线与已知直线平行, 所求直线的斜率为,又由于所求直线过点(1,3),所以,所求直线的方程为:,即.点评:根据两条直线平行或垂直的关系,得到斜率之间的关系,从而由已知直线的斜率及点斜式求出所求直线的方程. 此题也可根据直线方程的一种形式而直接写出方程,即,再化简而得.第23讲 3.3.1 两条直线的交点坐标知识要点:1. 一般地,将两条直线的方程联立,得到二元一次方程组. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程为直线系,所有的直
40、线恒过一个定点,其定点就是与的交点.例题精讲:【例1】判断下列直线的位置关系. 如果相交,求出交点坐标.直线l1: , l2: .解:解方程组,消y得 .当时,方程组无解,所以两直线无公共点,/.当时,方程组无数解,所以两直线有无数个公共点,l1与l2重合.当且,方程组有惟一解,得到, l1与l2相交.当时,/;当时,l1与l2重合;当且,l1与l2相交,交点是.【例2】求经过两条直线和的交点,且平行于直线的直线方程.解:设所求直线的方程为,整理为. 平行于直线, ,解得.则所求直线方程为.第24讲 3.3.2 两点间的距离知识要点:1. 平面内两点,则两点间的距离为:.特别地,当所在直线与x
41、轴平行时,;当所在直线与y轴平行时,;当在直线上时,.2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量;(2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.例题精讲:【例1】在直线上求一点,使它到点的距离为,并求直线的方程.解: 点在直线上, 可设,根据两点的距离公式得,解得,直线PM的方程为,即.【例2】直线2xy4=0上有一点P,求它与两定点A(4,1),B(3,4)的距离之差的最大值.解:找A关于l的对称点A,AB与直线l的交点即为所求的P点. 设, 则,解得, 所以线段.【例3】已知AO是ABC中BC边的中线,证明|AB|AC|=2(|AO|OC|).
42、解:以O为坐标原点,BC为x轴,BC的中垂线为y轴,建立如图所示坐标系xOy.yxB(-c,0)A(a,b)C(c,0)O设点A(a,b)、B(-c,0)、C(c,0),由两点间距离公式得:|AB|=,|AC|=,|AO|=, |OC|=c. |AB|AC|=, |AO|OC|=. |AB|AC|=2(|AO|OC|).第25讲 3.3.3 点到直线的距离及两平行线距离知识要点:1. 点到直线的距离公式为.2. 利用点到直线的距离公式,可以推导出两条平行直线,之间的距离公式,推导过程为:在直线上任取一点,则,即. 这时点到直线的距离为.例题精讲:【例1】求过直线和的交点并且与原点相距为1的直线
43、l的方程.解:设所求直线l的方程为, 整理得.由点到直线的距离公式可知,, 解得.代入所设,得到直线l的方程为.【例2】在函数的图象上求一点P,使P到直线的距离最短,并求这个最短的距离.解:直线方程化为. 设, 则点P到直线的距离为.当时,点到直线的距离最短,最短距离为.【例3】求证直线L:与点的距离不等于3.解:由点线距离公式,得=.假设,得到,整理得. , 无实根. ,即直线L与点的距离不等于3.点评:此解妙在反证法思路的运用. 先由点线距离公式求出距离,然后从“距离不等于3”的反面出发,假设距离是3求m,但求解的结果是m无解. 从而假设不成立,即距离不等于3.另解:把直线L:按参数m整理
44、,得.由,解得. 所以直线L恒过定点.点P到直线L取最大距离时, PQL,即最大距离是PQ=. 3, 直线L与点的距离不等于3.点评:此解妙在运用直线系恒过一个定点的知识,其定点就是与的交点. 由运动与变化观点,当直线PQL时,点线距离为最大.第26讲 第4章 4.1.1 圆的标准方程知识要点:1. 圆的标准方程:方程表示圆心为A(a,b),半径长为r的圆.2. 求圆的标准方程的常用方法:(1)几何法:根据题意,求出圆心坐标与半径,然后写出标准方程;(2)待定系数法:先根据条件列出关于a、b、r的方程组,然后解出a、b、r,再代入标准方程.例题精讲:【例1】过点、且圆心在直线xy20上的圆的方
45、程是( ).A.(x3)2(y1)24 B.(x3)2(y1)24C.(x1)2(y1)24 D.(x1)2(y1)24解:由圆心在直线xy20上可以得到A、C满足条件, 再把A点坐标(1,1)代入圆方程. A不满足条件. 所以,选C.另解:设圆心C的坐标为(a,b),半径为r, 因为圆心C在直线x+y2=0上, b=2a.由|CA|=|CB|,得(a1)2+(b+1)2=(a+1)2+(b1)2,解得a=1,b=1.因此,所求圆的方程为(x1)2+(y1)2=4. 选C.【例2】求下列各圆的方程:(1)过点,圆心在;(2)圆心在直线上的圆C与y轴交于两点解:(1)设所求圆的方程为. 则 ,
46、解得. 圆的方程为.(2)圆心在线段AB的垂直平分线上,代入直线得,圆心为,半径. 圆C的方程为.【例3】推导以点为圆心,为半径的圆的方程.解:设圆上任意一点,则.由两点间的距离公式,得到.化简即得圆的标准方程:第27讲 4.1.2 圆的一般方程知识要点:1. 圆的一般方程:方程 ()表示圆心是,半径长为的圆. 2. 轨迹方程是指点动点M的坐标满足的关系式.例题精讲:【例1】求过三点A(2,2)、B(5,3)、C(3,1)的圆的方程.解:设所求圆的方程为. 则, 解得. 圆的方程为.【例2】设方程,若该方程表示一个圆,求m的取值范围及圆心的轨迹方程. 解:配方得,该方程表示圆,则有,得,此时圆
47、心的轨迹方程为,消去m,得,由得x=m+3. 所求的轨迹方程是,第28讲 4.2.1 直线与圆的位置关系知识要点:1. 直线与圆的位置关系及其判定: 方法一:方程组思想,由直线与圆的方程组成的方程组,消去x或(y),化为一元二次方程,由判别式符号进行判别;方法二:利用圆心()到直线的距离,比较d与r的大小.(1)相交 ;(2)相切;(3)相离.2. 直线与圆的相切研究,是高考考查的重要内容. 同时,我们要熟记直线与圆的各种方程、几何性质,也要掌握一些常用公式,例如点线距离公式例题精讲:【例1】若直线(1+a)x+y+1=0与圆x2y22x0相切,则a的值为 .解:将圆x2y22x0的方程化为标
48、准式:(x1)2y21, 其圆心为(1,0),半径为1,由直线(1a)xy10与该圆相切,则圆心到直线的距离, a1. 【例2】求直线被圆所截得的弦长. (P144 练习1题)解:由题意,列出方程组,消y得,得,.设直线与圆交于点,则 =.另解:圆心C的坐标是,半径长. 圆心到直线的距离.所以,直线被圆截得的弦长是.第29讲 4.2.2 圆与圆的位置关系知识要点:两圆的位置关系及其判定: 设两圆圆心分别为,半径分别为,则:(1)两圆相交;(2)两圆外切;(3)两圆内切;例题精讲:【例1】已知圆:,圆:(1)试判断两圆的位置关系;(2)求公共弦所在的直线方程.解:(1)圆的圆心为(3,0),半径
49、为,圆的圆心为(0,2),半径为,又,圆与相交.(2)由,得公共弦所在的直线方程为.【例2】求经过两圆和的交点,并且圆心在直线上的圆的方程.解:设所求圆的方程为,即, 则所求圆的圆心为.圆心在直线上,解得. 所求圆的方程为第30讲 4.2.3 直线与圆的方程的应用知识要点:坐标法:建立适当的直角坐标系后,借助代数方法把要研究的几何问题,转化为坐标之间的运算,由此解决几何问题例题精讲:【例1】有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:每单位距离,A地的运费是B地运费的3倍已知A、B两地相距10千米,顾客购物的标准是总费用较低,求A、B两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民如何选择购货地解:建立使A(5,0)、B(5,0)的直角坐标系,设单位距离的运费是a元. 若在A地购货费用较低,则:价格A地运费价格B地运费即 .a0, 8x28y2100x200y0.得(x)2y2()2 .两地购物区域的分界线是以点C(,0)为圆心,为半径的圆. 所以,在圆C内的居民从A地购物便宜,圆C外的居民从B地购物便宜,圆C上的居民从A、B两地购物总费用相等【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 回迁房合同范本(2篇)
- 电源插座采购合同
- 赠品选购协议格式
- 片石供应商补充订购合同
- 工作服采购合同格式示例
- 质押合同解除的协议示例
- 热水器网络推广合同
- 连带责任保证书的重要性
- 延期借款合同范例
- 企业管理升级合作方案
- 模拟真实天平(flash模拟型课件)
- 物业管理保安方案
- 包工包料装修合同协议范本
- MSDS(T-35)DBE溶剂
- 第五章、根及根茎类生药鉴别基础
- 塔型单基重量统计表
- 真太阳时查询中国各主要城市平太阳时差对照表
- 实验室6S管理实施细则
- 灭火和应急疏散预案演练记录表
- 学习解读2021年《全民科学素质行动规划纲要(2021—2035年)》PPT演示课件
- 《特种设备注册登记与使用管理规则》
评论
0/150
提交评论