版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、离散型随机变量及其分布列引例:引例:(1)抛掷一枚骰子,可能出现的点数有几种情况?)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球)姚明罚球2次有可能得到的分数有几种情况?次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?)抛掷一枚硬币,可能出现的结果有几种情况? 思考:在上述试验开始之前,你能确定结果是哪一思考:在上述试验开始之前,你能确定结果是哪一 种情况吗?种情况吗?1,2,3,4,5,60分分,1分分,2分分正面向上,反面向上正面向上,反面向上能否把掷硬能否把掷硬币的结果也币的结果也用数字来表用数字来表示呢?示呢?分析:不行,虽然我们能够事先知道随机试
2、验可能出现的分析:不行,虽然我们能够事先知道随机试验可能出现的所有所有结果,但在一般情况下,试验的结果是随机出现的。结果,但在一般情况下,试验的结果是随机出现的。 在前面的例子中,我们确定了一个对应关系,使得每在前面的例子中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示。在这种对应关系一个试验结果都用一个确定的数字表示。在这种对应关系下,数字随着试验结果的变化而变化。下,数字随着试验结果的变化而变化。 像这种随着试验结果变化而变化的变量称为随机变量,像这种随着试验结果变化而变化的变量称为随机变量,常用常用X、Y、x x、h h 来表示。来表示。一、随机变量的概念:一、随机变
3、量的概念: 按照我们的定义,所谓的随机变量,就是随机试验按照我们的定义,所谓的随机变量,就是随机试验的试验结果与实数之间的一个对应关系。那么,随机变量的试验结果与实数之间的一个对应关系。那么,随机变量与函数有类似的地方吗?与函数有类似的地方吗? 随机变量是试验结果与实数的一种对应关系,而随机变量是试验结果与实数的一种对应关系,而函数是实数与实数的一种对应关系,它们都是一种映射函数是实数与实数的一种对应关系,它们都是一种映射 在这两种映射之间,在这两种映射之间, 试验结果的范围相当于函数的定义域,试验结果的范围相当于函数的定义域, 随机变量的取值结果相当于函数的值域。随机变量的取值结果相当于函数
4、的值域。随机变量和函数都是一种映射随机变量和函数都是一种映射.例例1、一个袋中装有、一个袋中装有5个白球和个白球和5个黑球,若从中任取个黑球,若从中任取3个,个,则其中所含白球的个数则其中所含白球的个数x x 就就是一个随机变量,求是一个随机变量,求x x 的取值的取值范围,并说明范围,并说明x x 的不同取值所表示的事件。的不同取值所表示的事件。解:解: x x 的取值范围是的取值范围是 0,1,2,3 ,其中,其中 x x =0表示的事件是表示的事件是“取出取出0个白球,个白球,3个黑球个黑球”; x x =1表示的事件是表示的事件是“取出取出1个白球,个白球,2个黑球个黑球”; x x
5、=2表示的事件是表示的事件是“取出取出2个白球,个白球,1个黑球个黑球”; x x =3表示的事件是表示的事件是“取出取出3个白球,个白球,0个黑球个黑球”;变题:变题:x x 3在这里又表示什么事件呢?在这里又表示什么事件呢?“取出的取出的3个球中,白球不超过个球中,白球不超过2个个” 写出下列各随机变量可能的取值,并说明它们各自写出下列各随机变量可能的取值,并说明它们各自所表示的随机试验的结果:所表示的随机试验的结果:(1)从)从10张已编号的卡片(从张已编号的卡片(从1号到号到10号)中任取号)中任取1张,张, 被取出的卡片的号数被取出的卡片的号数x x ;(2)抛掷两个骰子,所得点数之
6、和)抛掷两个骰子,所得点数之和Y;(3)某城市)某城市1天之中发生的火警次数天之中发生的火警次数X;(4)某品牌的电灯泡的寿命)某品牌的电灯泡的寿命X;(5)某林场树木最高达)某林场树木最高达30米,最低是米,最低是0.5米,则此林场米,则此林场 任意一棵树木的高度任意一棵树木的高度x x(x x=1、2、3、10)(Y=2、3、12)(X=0、1、2、3、)0,+)0.5,30思考:前思考:前3个随机变量与最后两个有什么区别?个随机变量与最后两个有什么区别?二、随机变量的分类:二、随机变量的分类:1、如果可以按一定次序,把随机变量可能取的值一一、如果可以按一定次序,把随机变量可能取的值一一
7、列出,那么这样的随机变量就叫做离散型随机变量列出,那么这样的随机变量就叫做离散型随机变量。 (如掷骰子的结果,城市每天火警的次数等等)(如掷骰子的结果,城市每天火警的次数等等)2、若随机变量可以取某个区间内的一切值,那么这样的、若随机变量可以取某个区间内的一切值,那么这样的 随机变量叫做连续型随机变量。随机变量叫做连续型随机变量。 (如灯泡的寿命,树木的高度等等)(如灯泡的寿命,树木的高度等等)注意:注意:(1)随机变量不止两种,我们只研究离散型随机变量;)随机变量不止两种,我们只研究离散型随机变量;(2)变量离散与否与变量的选取有关;)变量离散与否与变量的选取有关;比如:对灯泡的寿命问题,可
8、定义如下离散型随机变量比如:对灯泡的寿命问题,可定义如下离散型随机变量0, 10001, 1000Y 寿寿命命小小时时寿寿命命小小时时 下列试验的结果能否用离散型随机变量表示?下列试验的结果能否用离散型随机变量表示?(1)已知在从三亚到海口的铁道线上,每隔)已知在从三亚到海口的铁道线上,每隔50米有一个米有一个 电线铁站,这些电线铁站的编号;电线铁站,这些电线铁站的编号;(2)任意抽取一瓶某种标有)任意抽取一瓶某种标有2500ml的饮料,其实际量的饮料,其实际量 与规定量之差;与规定量之差;(3)某城市)某城市1天之内的温度;天之内的温度;(4)某车站)某车站1小时内旅客流动的人数;小时内旅客
9、流动的人数;(5)连续不断地投篮,第一次投中需要的投篮次数)连续不断地投篮,第一次投中需要的投篮次数.(6)在优、良、中、及格、不及格)在优、良、中、及格、不及格5个等级的测试中,个等级的测试中, 某同学可能取得的等级。某同学可能取得的等级。 若用若用X表示抛掷一枚质地均匀的骰子所得的点数,表示抛掷一枚质地均匀的骰子所得的点数,请把请把X取不同值的概率填入下表,并求判断下列事件发生取不同值的概率填入下表,并求判断下列事件发生的概率是多少?的概率是多少?(1)X是偶数是偶数;(;(2) X3;X123456P解:解:P(X是偶数是偶数)=P(X=2)+P(X=4)+P(X=6)12 P(X3)=
10、P(X=1)+P(X=2)13 616161616161可以看出:上述表在描述掷骰子这个随机试验的规可以看出:上述表在描述掷骰子这个随机试验的规律中起着重要的作用律中起着重要的作用.三、离散型随机变量的分布列:三、离散型随机变量的分布列:一般地,若离散型随机变量一般地,若离散型随机变量X 可能取的不同值为:可能取的不同值为: x1,x2,xi,xnX取每一个取每一个xi (i=1,2,n)的概率的概率P(X=xi)=Pi,则称表:,则称表:Xx1x2xiPP1P2Pi为离散型随机变量为离散型随机变量X的概率分布列,简称为的概率分布列,简称为X的分布列的分布列.有时为了表达简单,也用等式有时为了
11、表达简单,也用等式 P(X=xi)=Pi i=1,2,n来表示来表示X的分布列的分布列离散型随机变量的分布列应注意问题:离散型随机变量的分布列应注意问题:Xx1x2xiPP1P2Pi1、分布列的构成:、分布列的构成:(1)列出了离散型随机变量)列出了离散型随机变量X的所有取值;的所有取值;(2)求出了)求出了X的每一个取值的概率;的每一个取值的概率;2、分布列的性质、分布列的性质:0,1,2,ipi (1 1)1211ninipppp (2 2)n例例2、在掷一枚图钉的随机试验中,令、在掷一枚图钉的随机试验中,令,针尖向下,针尖向上01X如果针尖向上的概率为如果针尖向上的概率为p,试写出随机变
12、量,试写出随机变量X的分布列。的分布列。解:根据分布列的性质,针尖向下的概率是解:根据分布列的性质,针尖向下的概率是(1-p),于是,于是,随机变量随机变量X的分布列是的分布列是X01P1 -pp像上面这样的分布列称为两点分布列。像上面这样的分布列称为两点分布列。 如果随机变量如果随机变量X的分布列为两点分布列,就称的分布列为两点分布列,就称X服从两点分布,而称服从两点分布,而称p=P(X=1)为成功概率。为成功概率。例例3、袋子中有、袋子中有3个红球,个红球,2个白球,个白球,1个黑球,这些球个黑球,这些球除颜色外完全相同,现要从中摸一个球出来,若摸到除颜色外完全相同,现要从中摸一个球出来,
13、若摸到黑球得黑球得1分,摸到白球得分,摸到白球得0分,摸到红球倒扣分,摸到红球倒扣1分,试写分,试写出从该盒内随机取出一球所得分数出从该盒内随机取出一球所得分数X的分布列的分布列.解:因为只取解:因为只取1球,所以球,所以X的取值只能是的取值只能是1,0,-1121(1),(0),66331 (1)62P XP XP X 从袋子中随机取出一球从袋子中随机取出一球 所得分数所得分数X的分布列为:的分布列为:X10-1P111 632求离散型随机变量分布列的基本步骤:求离散型随机变量分布列的基本步骤:(1)确定随机变量的所有可能的值)确定随机变量的所有可能的值xi(2)求出各取值的概率)求出各取值
14、的概率P(X=xi)=pi(3)列出表格)列出表格定值定值 求概率求概率 列表列表课堂练习:课堂练习:0.30.16P3210-110a2a5a2、若随机变量、若随机变量的分布列如下表所示,则常数的分布列如下表所示,则常数a=_35C课堂练习:课堂练习:0.88思考:一个口袋有思考:一个口袋有5只同样大小的球,编号分别为只同样大小的球,编号分别为1,2,3,4,5,从中同时取出,从中同时取出3只,以只,以X表示取出的球最小的表示取出的球最小的号码,求号码,求X的分布列。的分布列。解:因为同时取出解:因为同时取出3个球,故个球,故X的取值只能是的取值只能是1,2,3当当X=1时,其他两球可在剩余的时,其他两球可在剩余的4个球中任选个球中任选 故其概率为故其概率为当当X=2时,其他两球的编号在时,其他两球的编号在3,4,5中选,中选, 故其概率为故其概率为当当X=3时,只可能是时,只可能是3,4,5这种情况,这种情况, 概率为概率为24353(1)5CP XC23353(2)10CP XC1(3)10P X X123P331 51010随机变量随机变量X的分布列为的分布列为思考:一个口袋有思考:一个口袋有5只同样大小的球,编号分别为只同样大小的球,编号分别为1,2,3,4,5,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年书法辅修课程交易保障协议模板
- 咕咚来了课程设计
- 交通规划课程设计改善
- 母婴小店课程设计案例
- 明朝课程设计
- 水处理管网工程课程设计
- 牛头刨床课程设计草稿
- 漆器鉴定课程设计
- 航空机务士官课程设计
- 人教版数学五年级下册期末考试试题带答案
- 翻转课堂讲解培训PPT反转课堂式教学模式介绍PPT课件(带内容)
- 公司战略规划和落地方法之:五看三定工具解析课件
- 初、中、高级钳工图
- 基础教育改革专题课件
- 市场开发培训课件
- 2022年医学专题-导尿PPT详解
- DBJ52∕T 093-2019磷石膏建筑材料应用统一技术规范
- 苏教版2022~2023学年四年级数学(上)期中质量检测试卷【含答案】
- 初中历史人教九年级上册(统编2023年更新) 资本主义制度的初步确立 教学设计(正式版)
- DB11-T1884-2021供热与燃气管道工程施工安全技术规程
- 高中有机化学综合练习题(附答案)
评论
0/150
提交评论