版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、小结与复习第二章 整式的加减要点梳理考点讲练当堂练习课堂小结要点梳理要点梳理一、整式的有关概念1.单项式:都是数或字母的_,这样的式子叫做单项式,单独的一个数或一个字母也是单项式2.单项式的系数:单项式中的数字因数叫做这个单项式的系数积 3.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数4.多项式:几个单项式的_叫做多项式5.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数6.整式:_统称整式和单项式与多项式二、同类项、合并同类项1.同类项:所含字母_,并且相同字母的指数也_的项叫做同类项几个常数项也是同类项2.合并同类项:把多项式中的同类项合并成一项,叫做合并
2、同类项,即把它们的系数相加作为新的系数,而字母部分不变相同相同注意 (1)同类项不考虑字母的排列顺序,如7xy与yx是同类项;(2)只有同类项才能合并,如x2x3不能合并三、整式的加减一般地,几个整式相加减,如果有括号就先_,然后再_ 去括号合并同类项考点讲练考点讲练考点一 整式的有关概念 A 针对训练 33考点二 同类项例2若3xm5y2与x3yn的和是单项式,求mn的值【解析】由题意可知 3xm5y2与x3yn是同类项, 所以x的指数和y的指数分别相等针对训练2.若5x2 y与x m yn是同类项,则m=( ) ,n=( ) 若单项式a2b与3am+n bn能合并,则m=( ) , n=(
3、 ) 1 1 1只有同类项才能合并成一项考点三 去括号例3已知Ax32y3xy2,By3x32xy2,求:(1)AB;(2)2B2A.【解析】 把A,B所指的式子分别代入计算解:(1)AB(x32y3xy2)(y3x32xy2) x32y3xy2y3x32xy2 2x3y3xy2.(2)2B2A2(y3x32xy2)2(x32y3xy2) 2y32x34xy22x34y32xy2 6xy26y3.针对训练3下列各项中,去括号正确的是()Ax2(2xy2)x22xy2B(mn)mnmnmnCx(5x3y)(2xy)2x2yDab(ab3)3C例4若A是一个三次多项式,B是一个四次多项式,则AB一
4、定是()A三次多项式 B四次多项式或单项式C七次多项式 D四次七项式【解析】AB的最高次项一定是四次项,至于是否含有其它低次项不得而知,所以AB只可能是四次多项式或单项式.故选B. B你能举出对应的例子吗?针对训练4若A是一个四次多项式,B是一个二次多项式,则AB ()A可能是六次多项式 B可能是二次多项式C一定是四次多项式或单项式 D可能是0 C考点四 整式的加减运算与求值【解析】 如果把x的值直接代入,分别求出A,B,C的值,然后再求3A2B36C的值显然很麻烦,不如先把原式化简,再把x值代入计算5.化简后再求值:5x2-2y-8(x2-2y)+3(2x2-3y),其中|x+12|+(y-
5、13)2=0分析:原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值针对训练解:原式=5x2-2y-8x2+16y+6x2-9y=3x2-5y.因为|x+2|+(y-3)2=0,所以x+2=0,y-3=0,即x=-2,y=3,则原式=12-15=-3设n表示自然数,用关于n的整式表示出来.例6:从2开始连续的偶数相加,它们和的情况如下表:加数的个数n和s12=1222+4=6=2332+4+6=12=3442+4+6+8=20=45考点五 与整式的加减有关的探索性问题s与n之间有什么关系?能否用一个关系式来表示?分析:观察上表,当n=1时,s=12,即第一个数字是1
6、,第二个数字是2;当n=2时,s=2+4=6=23,第一个数字是2,第二个数字是3,依此类推,发现第一个数字是n,第二个数字比n大1.解:s与n的关系为s=n(n+1).解:当n= =1002时,s=1002(1002+1)=1005006.即2+4+6+8+2004=1005006.22004小结:观察是解题的前提条件,当已知数据有很多组时,需要仔细观察,反复比较,才能发现其中的规律.计算2+4+6+8+2004.针对训练6. 观察下列图形:它们是按一定规律排列的,依照此规律,第2017个图形中共有_个五角星 6052【解析】可以发现每个图形的五角星个数都比前面一个图形的五角星个数多3个.由于第1个图形的五角星个数是31+1,所以第n个图形的五角星个数是3n+1,故第2017个图形五角星个数是32017+1=6052.课堂小结课堂小结整
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招标代理公司挂靠合同范例
- 冰箱合同范例
- 砂浆销售运输合同范例
- 商业地产投资租赁合同范例
- 橙子 收购合同范例
- 个人诈骗罪合同范例
- 四方协议合同范例
- 股票英文合同范例
- 合同范例签订
- 出口销售合同范例中文
- 血细胞分离安全护理
- 学校传染病控制课件
- 福建省泉州市2023-2024学年高一上学期期末质检英语试题(解析版)
- 中华人民共和国民法典(总则)培训课件
- 第三单元第1课 标志设计 课件 2024-2025学年人教版(2024)初中美术七年级上册
- IB课程-PYP小学项目省公开课获奖课件说课比赛一等奖课件
- 2024年农贸市场日常管理制度例文(四篇)
- 《数字信号处理(第2版)》本科全套教学课件
- 上市央国企数智化进程中人才就业趋势
- 钉钉数字化管理师中级题库
- 2024版小学科学六年级上册第四单元《能量》教学课件
评论
0/150
提交评论