广州市普通高中毕业班综合测试一理数_第1页
广州市普通高中毕业班综合测试一理数_第2页
广州市普通高中毕业班综合测试一理数_第3页
广州市普通高中毕业班综合测试一理数_第4页
广州市普通高中毕业班综合测试一理数_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学(理科)本试卷共4页,23小题,满分150分。考试用时120分钟。注意事项:1本试卷分第卷(选择题)和第卷(非选择题)两部分答卷前,考生务必将自己的姓名、准考证号填写在答题卡上2回答第卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号写在本试卷上无效3回答第卷时,将答案写在答题卡上,写在本试卷上无效4考试结束后,将本试卷和答题卡一并交回第卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)复数的共轭复数是(A)(B)(C)(D)(2)若集合,则(A)(B)(C)(D)(3)已知等比数列的

2、各项都为正数, 且成等差数列, 则的值是(A)(B)(C)(D)(4)阅读如图的程序框图. 若输入, 则输出的值为(A)(B)(C)(D)(5)已知双曲线的一条渐近线方程为,分别是双曲线的左,右焦点, 点在双曲线上, 且, 则等于(A)(B)(C)或(D)或(6)如图, 网格纸上小正方形的边长为1, 粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为, 则该几何体的俯视图可以是(7)五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币. 若硬币正面朝上, 则这个人站起来; 若硬币正面朝下, 则这个人继续坐着. 那么, 没有相邻的两个人站起来的概

3、率为(A)(B)(C)(D)(8)已知,分别是椭圆的左, 右焦点, 椭圆上存在点使为钝角, 则椭圆的离心率的取值范围是(A)(B)(C)(D)(9)已知成立, 函数在R上是减函数, 则是的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(10)九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑若三棱锥为鳖臑, 平面, ,, 三棱锥的四个顶点都在球的球面上, 则球的表面积为(A)(B)(C)(D)(11)若直线与函数的图象相交于点,且,则线段与函数的图象所围成的图形面积是(A)(B)(C)(D)(12)已知

4、函数, 则的值为(A)(B)(C)(D)第卷本卷包括必考题和选考题两部分。第1321题为必考题,每个考生都必须作答。第2223题为选考题,考生根据要求作答。二、填空题:本小题共4题,每小题5分。(13)已知,且,则向量与向量的夹角是. (14)的展开式中各项系数和为,则的系数为.(用数字填写答案)(15)已知函数若, 则实数的取值范围是.(16)设为数列的前项和, 已知, 对任意N, 都有,则N)的最小值为. 三、解答题:解答应写出文字说明、证明过程或演算步骤。(17)(本小题满分12分)如图, 在中, 点在边上, . () 求; () 若的面积是, 求.(18)(本小题满分12分)近年来,我

5、国电子商务蓬勃发展. 2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统. 从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为,对服务的满意率为,其中对商品和服务都满意的交易为80次. () 根据已知条件完成下面的列联表,并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?对服务满意对服务不满意合计对商品满意80对商品不满意合计200() 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量,求的分布列和数学期望.附:(其中为样

6、本容量)(19)(本小题满分12分)如图1,在直角梯形中,/,, 点是边的中点, 将沿折起,使平面平面,连接, 得到如图2所示的几何体. () 求证:平面;() 若,二面角的平面角的正切值为,求二面角的余弦值.图1 图2(20)(本小题满分12分)过点作抛物线的两条切线, 切点分别为, . () 证明:为定值;() 记的外接圆的圆心为点, 点是抛物线的焦点, 对任意实数, 试判断以为直径的圆是否恒过点? 并说明理由.(21)(本小题满分12分)已知函数. () 若函数有零点, 求实数的取值范围; () 证明:当,时, .请考生在第2223题中任选一题作答,如果多做,则按所做的第一题计分。(22

7、)(本小题满分10分)选修44:坐标系与参数方程在直角坐标系中,直线的参数方程为为参数. 在以坐标原点为极点, 轴正半轴为极轴的极坐标系中, 曲线() 求直线的普通方程和曲线的直角坐标方程;() 求曲线上的点到直线的距离的最大值.(23)(本小题满分10分)选修45:不等式选讲已知函数. () 若,求实数的取值范围;() 若R , 求证:.数学(理科)参考答案评分说明:1本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则2对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部

8、分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分3解答右端所注分数,表示考生正确做到这一步应得的累加分数4只给整数分数选择题不给中间分一、选择题(1)B (2)C (3)A (4)B (5)D (6)D(7)C (8)A (9)B (10)C (11)A (12)B二、填空题(13)(14)(15)(16)三、解答题(17) 解:() 在中, 因为,由余弦定理得, 1分所以,整理得, 2分解得. 3分所以. 4分所以是等边三角形. 5分所以6分() 法1: 由于是的外角, 所以. 7分因为的面积是, 所以.8分所以. 9分在中, , 所以. 10分

9、在中, 由正弦定理得, 11分所以.12分法2: 作, 垂足为,因为是边长为的等边三角形, 所以. 7分因为的面积是, 所以. 8分所以. 9分所以.在Rt中, , 10分所以, . 所以11分. 12分(18)解:()列联表:对服务满意对服务不满意合计对商品满意8040120对商品不满意701080合计150502002分3分因为,所以能有99%的把握认为“网购者对商品满意与对服务满意之间有关系”. 4分() 每次购物时,对商品和服务都满意的概率为,且的取值可以是0,1,2,36分. 10分0123的分布列为:11分所以. 12分或者:由于,则. 12分(19) 解:() 因为平面平面,平面

10、平面,又,所以平面. 1分因为平面,所以. 2分又因为折叠前后均有,, 3分所以平面. 4分 () 由()知平面,所以二面角的平面角为. 5分又平面,平面,所以.依题意. 6分因为,所以. 设,则.依题意,所以,即. 7分解得,故. 8分法1:如图所示,建立空间直角坐标系,则,,所以,.由()知平面的法向量.9分设平面的法向量由得令,得,所以. 10分所以. 11分由图可知二面角的平面角为锐角,所以二面角的余弦值为. 12分法2 :因为平面,过点作/交于,则平面. 因为平面,所以. 9分过点作于,连接,所以平面,因此. 所以二面角的平面角为. 10分由平面几何知识求得,所以. 所以cos=.

11、11分所以二面角的余弦值为. 12分(20)解: () 法1:由,得,所以. 所以直线的斜率为.因为点和在抛物线上, 所以,.所以直线的方程为. 1分因为点在直线上,所以,即. 2分同理,. 3分所以是方程的两个根.所以. 4分又, 5分所以为定值. 6分法2:设过点且与抛物线相切的切线方程为, 1分由消去得,由, 化简得. 2分所以. 3分由,得,所以.所以直线的斜率为,直线的斜率为. 所以, 即. 4分又, 5分所以为定值. 6分() 法1:直线的垂直平分线方程为, 7分由于,所以直线的垂直平分线方程为. 8分同理直线的垂直平分线方程为. 9分由解得, ,所以点. 10分抛物线的焦点为则由

12、于,11分所以所以以为直径的圆恒过点12分另法: 以为直径的圆的方程为11分把点代入上方程,知点的坐标是方程的解.所以以为直径的圆恒过点12分法2:设点的坐标为,则的外接圆方程为,由于点在该圆上,则,.两式相减得, 7分由()知,代入上式得, 8分当时, 得, 假设以为直径的圆恒过点,则即,得, 9分由解得, 10分所以点. 11分当时, 则,点.所以以为直径的圆恒过点12分(21)解:()法1: 函数的定义域为.由, 得. 1分因为,则时,;时,.所以函数在上单调递减, 在上单调递增. 2分当时,. 3分当, 即时, 又, 则函数有零点. 4分所以实数的取值范围为. 5分法2:函数的定义域为

13、.由, 得. 1分令,则.当时, ; 当时, .所以函数在上单调递增, 在上单调递减. 2分故时, 函数取得最大值. 3分因而函数有零点, 则. 4分所以实数的取值范围为. 5分 () 令, 则.当时,;当时,.所以函数在上单调递减, 在上单调递增.当时, . 6分于是,当时, 7分令, 则.当时,;当时,.所以函数在上单调递增, 在上单调递减.当时, . 8分于是, 当时, 9分显然, 不等式、中的等号不能同时成立.故当时, . 10分因为所以.所以. 11分所以, 即. 12分(22)解: () 由消去得, 1分所以直线的普通方程为. 2分由, 3分得. 4分将代入上式,得曲线的直角坐标方程为, 即. 5分 () 法1:设曲线上的点为, 6分则点到直线的距离为7分8分当时, , 9分所以曲线上的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论