




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、理论要求二、题型与解法极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1、函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2、极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3、连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)第二讲 导数、微分及其应用一、理论要求
2、1、导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2、微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理会用定理证明相关问题3、会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法第三讲 不定积分与定积分一、理论要求二、题型与解法1、不定积分掌握不定积分的概念、性质(线性、与微分的关系)会求不定积分(基本公式、线性、凑微分、换元技巧、分部)2、定积分理解定积分的概念与性质理解变上限定积分是其上限的函数及其导数求法会求定积分、广义积分会用定积分求几何问题(长、面、体)会用定积分求物理问题(功、引力、压力)及函数平均值第四讲 向量代数、多元函数微分与空间解析几何一、理论要求二、题型与解法1、向量代数理解向量的概念(单位向量、方向余弦、模)了解两个向量平行、垂直的条件向量计算的几何意义与坐标表示2、多元函数微分理解二元函数的几何意义、连续、极限概念,闭域性质理解偏导数、全微分概念能熟练求偏导数、全微分熟练掌握复合函数与隐函数求导法3、多元微分应用理解多元函数极值的求法,会用Lagrange乘数法求极值4、空间解析几何掌握曲线的切线与法平面、曲面的切平面与法线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国银行外汇商业房抵押贷款合同中国银行抵押贷款
- 2025授权专卖店特许合同范本
- 2025设备租赁合同欠款争议解决
- 2025专利使用许可专用合同范本
- 《2025年度企业雇佣合同》
- 2025年标准管理资金信托合同模板
- 2025企业临时工劳动合同样本示范
- 2025租赁合同格式
- 2025网络安全等级保护测评服务合同
- 2025合同违约不及时履行将产生保函责任
- 电台项目可行性研究报告
- 人教版(2024)七年级下册英语期中质量检测试卷(含答案)
- 针刺伤预防与处理(中华护理学会团体标准)
- 2024年度《安全教育家长会》课件
- 安全生产法律法规知识培训课件
- 地铁安检专业知识培训课件
- 2024年国家国防科技工业局军工项目审核中心招聘笔试参考题库附带答案详解
- 南京开通KT820数控车床说明书
- GB/T 17554.1-2006识别卡测试方法第1部分:一般特性测试
- 送教上门学生教案(生活适应和实用语数共17篇)
- 三年级家长会(语文).ppt
评论
0/150
提交评论